深度学习
文章平均质量分 67
NLP、图像描述
浪里摸鱼
欢迎光临(*`∀´*)ノ亻!
展开
-
【深度学习框架】keras、pytorch对比
模型输入区别区别pytorchkerasAPItorch.tensorInput形状NCHWNHWC缩写意义>API(Application Programming Interface,应用程序编程接口)是一些预先定义的函数,目的是提供应用程序与开发人员基于某软件或硬件得以访问一组例程的能力,而又无需访问源码,或理解内部工作机制的细节。NCHW和NHWC:N代表数量, C代表channel,H代表高度,W代表宽度.NCHW和NHWC代码原创 2021-01-21 14:53:04 · 2774 阅读 · 0 评论 -
【深度学习框架】keras框架总结
正则化Dropout激活函数原创 2021-01-20 14:53:26 · 185 阅读 · 0 评论 -
【深度学习框架】pytorch学习
pytorch学习从入门到不知道哪一步的学习思路PyTorch/[PyTorch 学习笔记] 3.1 模型创建步骤与 nn.ModulePytorch打怪路(一)pytorch进行CIFAR-10分类(1)CIFAR-10数据加载和处理PyTorch 深度学习:60分钟快速入门pytorch常用汇总莫视频课...原创 2021-01-21 10:58:51 · 207 阅读 · 0 评论 -
keras-图像分类(内有详细代码注释)
目录图片预处理统一图片类型图片预处理统一图片类型写完之后先执行让它操作一波在这里插入代码片-------------到这里大小 格式 标签 问题就解决完了--------------------------------2.模型训练---------------------#我取了40个图片做为测试图片,其余为训练图片#import osfrom PIL import Imageimport numpy as npfrom keras.utils import np_utilsfro原创 2021-01-20 16:46:34 · 1150 阅读 · 0 评论 -
pytorch函数AdaptiveMaxPool2d
目录自适应最大池化应用常用词向量BertBert的输入Bert的预训练过程Bert的encoderTransformer EncoderBert encoderBert的输出词向量的维度自适应最大池化torch.nn.AdaptiveMaxPool2d(output_size, return_indices=False)output_size: 输出信号的尺寸,可以用(H,W)表示HW的输出。return_indices: 如果设置为True,会返回输出的索引。处理之后维度不变,后两个维度按原创 2021-07-02 11:01:02 · 2246 阅读 · 1 评论 -
keras 按batch size读取loss
这里我的想法就是先写一个回调函数读取每个batch中loss,然后读取History中存储的数值这个方法很大众,不管可以读取loss,History中所有值都可以每个batch记录损失函数(loss)class Mylosscallback(Callback): def __init__(self, log_dir): super(Callback, self).__init__() self.val_writer = tf.summary.FileWriter原创 2021-04-24 19:45:02 · 984 阅读 · 0 评论 -
keras:输出每轮 batch_size 的 loss的图
画图库使用:官方文档import matplotlib.pyplot as pltx=[3,4,5] # [列表]y=[2,3,2] # x,y元素个数N应相同plt.plot(x,y) # loss的绘制是将时间视为x,损失函数的值是yplt.show()keras 中的 History 对象只能返回每轮 epoch 的损失函数,不能返回 batch_size 的lossb = abs(float(self.history.history[‘loss’][0]))loss_value.原创 2021-04-02 20:36:40 · 1145 阅读 · 1 评论 -
深度学习编码之后解码
1.为什么深度学习要编码之后解码?原创 2020-11-14 11:12:13 · 1172 阅读 · 0 评论 -
深度学习实验结果判定
目录深度学习每次结果不一致深度学习每次结果不一致使用定值随机种子比较好随机数种子设置?一共有三个随机数种子,random,numpy和深度学习库的gpu种子,不过我三个都设置了,在gpu上还是会结果不一样,cpu每次都一样的,我用的dynet。可以直接取最好值进行汇报,更严谨的话做10次取平均的。...原创 2021-10-08 16:53:20 · 1931 阅读 · 0 评论 -
val_loss先下降后上升或不下降只上升
val_loss先下降后上升或不下降只上升原创 2021-11-08 19:04:20 · 12116 阅读 · 0 评论 -
时间序列模型是什么?
时间序列定义:时间序列是时间间隔不变的情况下收集的不同时间点数据集合,这些集合被分析(通过曲线拟合和参数估计来建立数学模型的理论和方法)用来了解长期发展趋势及为了预测未来。时间序列分类:ARMA模型的全称是自回归 移动平均 (auto regression moving average)模型,它是目前最常用的拟合平稳序列的模型,它又可细分为三大类:AR模型(auto regression model)MA模型(moving average model)ARMA模型(auto regressio原创 2021-04-02 20:05:00 · 2485 阅读 · 0 评论 -
GCN理解
论文题目:Semi-Supervised Classification with Graph Convolutional Networks时间:2017来源:ICLR论文链接:https://arxiv.org/abs/1609.02907代码链接(TensorFlow):https://github.com/tkipf/gcn代码复现(Pytorch):https://github.com/tkipf/pygcn1. 相关工作1.1 GNNGNN 的作用GNN的局限性原创 2021-04-09 16:23:25 · 501 阅读 · 0 评论 -
GNN图神经网络
一、表示学习表示学习:自动地学习出有效的特征,并提高最终机器学习模型的性能。好的表示:一个好的表示应该具有很强的表示能力,即同样大小的向量可以表示更多信息。一个好的表示应该使后续的学习任务变得简单,即需要包含更高层的语义信息。一个好的表示应该具有一般性,是任务或领域独立的。虽然目前的大部分表示学习方法还是基于某个任务来学习,但我们期望其学到的表示可以比较容易的迁移到其他任务上我们经常使用两种方式来表示特征:离散表示(如:one-hot):研究对象表示为向量,这个向量只在某个维度上值为1,其余原创 2021-04-03 19:05:19 · 387 阅读 · 2 评论 -
【自然语言处理】专业术语汇总(持续更新...)
分词(Segment)词性标注(Label)命名实体识别(Named Entity Recognition)句法分析(Syntax Parsing)情感识别(Emotion Recognition)纠错(Correction)问答系统(QA System)正则化(normalization)标准化(scale)标记化(tokenization)标记(token)语料库 corpus...原创 2021-04-02 20:15:43 · 1591 阅读 · 0 评论 -
【自然语言处理基础知识】LSTM
目录==参考资料====框架构成==*RNN和LSTM区别**RNN模型**LSTM模型*==程序实现==pytorch实现lstm输入==模型输入====模型输出==参考资料LSTM原理详解lstm讲解视频框架构成RNN和LSTM区别RNN没法回忆起久远的回忆,只能短暂记忆长时间的回忆会造成:1.梯度消失2.梯度爆炸RNN模型按时间线展开:RNN的隐藏层的计算是一个全连接:LSTM模型RNN在三个线分别加一个门就是LSTM遗忘门:如果新的x改变了以前主线的一些想原创 2021-01-30 11:45:42 · 580 阅读 · 1 评论 -
【自然语言处理基础知识】Word Embedding
Word Embedding 知识总结原创 2021-01-30 11:57:27 · 134 阅读 · 0 评论 -
【transformer笔记】Task02 :Attention和Transformer
目录seq2seq模型组成向量长度RNN 模型的输入attentionattention对seq2seq的改进seq2seq模型组成seq2seq模型是由编码器(Encoder) 和 解码器(Decoder) 组成编码器:把这些信息转换为一个向量(称为上下文(context))解码器:解码器开始逐项生成输出序列中的元素向量长度上下文向量的长度取决于编码器 RNN 的隐藏层神经元的数量。RNN 模型的输入两个输入:输入序列中的一个元素 x2x_2x2(通过word embeddin原创 2021-08-18 11:52:44 · 163 阅读 · 0 评论 -
权重初始化
出现梯度爆炸时候考虑是权重初始化过大的原因权值初始化的方法主要有:常量初始化(constant)、高斯分布初始化(gaussian)、positive_unitball初始化、均匀分布初始化(uniform)、xavier初始化、msra初始化、双线性初始化(bilinear)常量初始化(constant) 把权值或者偏置初始化为一个常数,具体是什么常数,可以自己定义高斯分布初始化(gaussian) 需要给定高斯函数的均值与标准差positive_unit...原创 2020-11-24 15:50:51 · 463 阅读 · 0 评论 -
强化学习(1)
课程资料参见:https://github.com/zhoubolei/introRL课件:https://github.com/zhoubolei/introRL/blob/master/lecture1.pdf数列决策过程机器感知和机器决策结合起来和监督学习对比学习监督学习:有标签强监督学习会希望数据尽量的i.i.d(IID即随机的)可以消除数据之间的相关性无监督学习:无标签强化学习:1.先尝试在返回结果,通过不停地试错返回结果2.数据以序列形式输入,监督原创 2020-10-19 14:52:07 · 216 阅读 · 0 评论 -
强化学习(2)---马尔科夫决策
需要知道的一些概念马尔科夫决策过程马尔科夫链马尔科夫奖励过程马尔科夫中的价值函数马尔科夫决策过程的控制:policy iteration value iteration基于价值函数的agent:不使用决策函数,在价值函数中推测police 基于police的agent:不使用价值函数 两个都用通过模型使用不同分类:看会否有环境转移模型马尔科夫决策过程是强化学习的基本框架,环境是全部可以观测 如果说状态转移属于马尔科夫就是说一个状态的下一状态是取决于它当原创 2020-10-21 19:26:36 · 242 阅读 · 0 评论 -
Error:The shape of the input to Flatten is not fully defined got None, None, 120 .
报错:出错位置:Flatten()没有明确的规定输入的shape原创 2020-11-24 14:08:29 · 716 阅读 · 0 评论