代码随想录算法训练营第四十七天| 198.打家劫舍、 213.打家劫舍II 、 337.打家劫舍III

打家劫舍

题目链接:力扣

  1. 确定dp数组(dp table)以及下标的含义
    dp[i]:截至到i位置的房屋,最多可以偷窃的金额为dp[i]。
  2. 确定递推公式
    决定dp[i]的关键因素就是第i房间偷还是不偷。
    如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i]
    即:第i-1房不偷,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。
    如果不偷第i房间,那么dp[i] = dp[i - 1]
    然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
  3. dp数组如何初始化
    dp[0] 一定是 nums[0]
    dp[1] = max(nums[0], nums[1]);
  4. 确定遍历顺序
    dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,所以遍历顺序一定是从前到后遍历
  5. 举例推导dp数组
class Solution {
public:
    int rob(vector<int>& nums) {
        vector<int>dp(nums.size()+1); //dp表示截至到下标i,最多可以偷窃的金额
       
        dp[0] = nums[0];
        if(nums.size() == 1)
        return dp[0];

        dp[1] = max(nums[0],nums[1]);

        for(int i=2; i<nums.size();i++)
        //如果第i间房不偷,dp[i] = dp[i-1]; 如果偷,则dp[i] = dp[i-2]+num[i]
         dp[i] = max(dp[i-1], dp[i-2]+nums[i]); 

        return dp[nums.size()-1];

    }
};

打家劫舍II

题目链接:力扣

与上题不同的是,这道题nums形成了环状 

对于一个数组,成环的话主要有如下三种情况:

  • 情况一:考虑不包含首尾元素

  • 情况二:考虑包含首元素,不包含尾元素

  • 情况三:考虑包含尾元素,不包含首元素

其中情况二和情况三包含了情况一,因为虽然考虑包含首或尾元素,但不一定要选首或尾部元素 

则此题和题一就很类似了

class Solution {
public:
    int rob(vector<int>& nums) {

        vector<int>dp(nums.size()+1);

        dp[0] = nums[0];
        if(nums.size() == 1)
        return dp[0];
    
        return max(robrange(nums,0,nums.size()-2), robrange(nums,1,nums.size()-1));
    }


    int robrange(vector<int>& nums, int begin, int end)
    {
        
        if(begin == end)  return nums[begin];
        vector<int>dp(end+1);

        dp[begin] = nums[begin];
        dp[begin+1] = max(nums[begin],nums[begin+1]);

        for(int i=begin+2; i<=end; i++)
         dp[i] = max(dp[i-1], dp[i-2]+nums[i]);

        return dp[end];
    }
};

 打家劫舍III

题目链接:力扣 

一开始拿到题目的时候,先层序遍历,算出每层的总和,再套第一题的思路。
后来发现这样子是不对的,比如用例  [2,1,3,null,4]

其实这是一道树形dp的题目。

  1. 确定递归函数的参数和返回值
    这里要求得到一个节点 偷与不偷的两个状态所得到的金钱,
    那么返回值就是一个长度为2的数组。
    则递归函数的定义如下,参数为当前节点
vector<int> robTree(TreeNode* cur) 

           其实这里的返回数组就是dp数组。
           dp数组(dp table)以及下标的含义:
          下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。
          本题dp数组就是一个长度为2的数组!
          在递归的过程中,系统栈会保存每一层递归的参数。即标记树中每个节点的状态。

     2. 确定终止条件
        在遍历的过程中,如果遇到空节点的话,无论偷还是不偷都是0,所以返回

if (cur == NULL) return vector<int>{0, 0};

         也相当于dp数组的初始化。

     3.确定遍历顺序
      首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。
      通过递归左节点,得到左节点偷与不偷的金钱。
      通过递归右节点,得到右节点偷与不偷的金钱。

     4.确定单层递归的逻辑
        如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; 
        如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,
        所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);

       最后当前节点的状态就是{val2, val1};
       即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}

class Solution {
public:
    int rob(TreeNode* root) {
        vector<int> result = robTree(root);
        return max(result[0], result[1]);
    }

    vector<int> robTree(TreeNode* cur) {
        if (cur == NULL) 
          return vector<int>{0, 0};
        vector<int> left = robTree(cur->left);
        vector<int> right = robTree(cur->right);
        // 偷cur,不能偷左右子节点
        int val1 = cur->val + left[0] + right[0];
        // 不偷cur,那么可以偷也可以不偷左右节点,则取较大的情况
        int val2 = max(left[0], left[1]) + max(right[0], right[1]);
        return {val2, val1};
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值