方法一:将两个数组合并寻找中位数,时间复杂度O(m+n)
方法二:二分法
主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较,这里的 “/” 表示整除
* nums1 中小于等于 pivot1 的元素有 nums1[0 … k/2-2] 共计 k/2-1 个
* nums2 中小于等于 pivot2 的元素有 nums2[0 … k/2-2] 共计 k/2-1 个
* 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
* 这样 pivot 本身最大也只能是第 k-1 小的元素
* 如果 pivot = pivot1,那么 nums1[0 … k/2-1] 都不可能是第 k 小的元素。把这些元素全部 “删除”,剩下的作为新的 nums1 数组
* 如果 pivot = pivot2,那么 nums2[0 … k/2-1] 都不可能是第 k 小的元素。把这些元素全部 “删除”,剩下的作为新的 nums2 数组
* 由于我们 “删除” 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
*/
图文见:详细图文介绍
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int len1 = nums1.size();
int len2 = nums2.size();
int k = 0;
if ((len1 + len2) % 2 == 0)
return (getKthElement(nums1, nums2, (len1 + len2) / 2) + getKthElement(nums1, nums2, (len1 + len2) / 2 + 1)) / 2.0;
else
return getKthElement(nums1, nums2, (len1 + len2) / 2+1);
}
int getKthElement(const vector<int>& nums1, const vector<int>& nums2, int k) {
int len1 = nums1.size();
int len2 = nums2.size();
int index1 = 0, index2 = 0;
while (true) {
if (index1 == len1)
return nums2[index2 + k - 1];
if (index2 == len2)
return nums1[index1 + k - 1];
if (k == 1)
return min(nums1[index1], nums2[index2]);//如果k==1,返回较小值
int newindex1 = min(index1 + k / 2 - 1, len1 - 1);//防止出现越界
int newindex2 = min(index2 + k / 2 - 1, len2 - 1);
if (nums1[newindex1] < nums2[newindex2]) {//更新nums1的起始地址和k
k -= newindex1 - index1 + 1;
index1 = newindex1+1;
}
else {
k -= newindex2 - index2 + 1;
index2 = newindex2+1;
}
}
}
};