Machine Learning-week5 Swarm intelligence

定义

群体智能是一种基于去中心化、自组织系统的集体行为的人工智能。群体智能是处理由许多个体组成的自然和人工系统的规律,这些个体使用分散控制和自组织进行协调。

主要特点: 个体与彼此和/或与环境的局部互动所导致的集体行为

例子:

鱼群, 成群的鸟儿, 细菌生长, 成群的陆生动物。一些多机器人系统。

特性: 许多个体遵循非常简单的规则,没有集中的控制结构来规定个体应该如何在群体之间进行就近交互,从而导致复杂的全局行为的出现。(就是自由散漫从而导致的无序混乱)

一个独立的个体不可能什么事情都能自己独立完成,有的事情核心在于群体协作。

Emergence

一个复杂的系统由相互连接的部分组成,这些部分作为一个整体表现出一个或多个属性(可能属性中的行为)从单个部分的属性来看并不明显。 

Emergence- 复杂系统和模式从许多简单的相互作用中产生的方式。

自组织(Self-organization)

自组织是在由少数或许多组件组成的系统中自发(通常看似有目的)形成空间、时间、时空结构或功能。例如很多生物和化学方面的物质会呈现出一些结构性。

Stigmergy

Stigmergy 是代理或动作之间自发、间接协调的机制,其中一个动作在环境中留下的痕迹会刺激相同或不同代理的后续动作的执行。 (例如,白板:一个人在上面写字之后其他人可能会跟着往后写字),这也是一种自组织的体现。

蚂蚁在在找到食物后返回巢穴的途中,通过释放信息素来交换信息。 他们共同开发了一个复杂的小径网络,以最有效的方式将巢穴与不同的食物来源连接起来。

群体智能的例子有:

蚂蚁的聚类行为 黄蜂和白蚁的筑巢行为 鸟类和鱼类的聚集和教育 蚁群优化 粒子群优化 基于群的网络管理 机器人群中的合作行为 随机扩散搜索

成群结队和群居是大群鸟类和鱼类表现出的高度协调的群体行为的例子。 科学家们已经证明,这些优雅的群体级行为可以理解为自组织过程的结果,在这种过程中,没有领导者负责,每个人都仅根据就近可用信息做出移动决策:距离,感知速度和方向,和身边的个体的移动。

机器人群体的合作行为

在自然系统中观察到的许多群体行为激发了使用机器人群体解决问题的创新方法。 这就是所谓的群体机器人。

双桥实验

阿根廷蚂蚁的巢穴通过两座桥与食物来源相连。 蚂蚁可以使用两个桥中的任何一个到达食物来源并返回巢穴。 实验的目标是观察由此产生的菌落行为。 在现实世界中,蚂蚁(最初)随机游荡,在找到食物后返回它们的殖民地,同时留下信息素踪迹。 如果其他蚂蚁找到了这样的路径,它们很可能不会继续随意移动,而是沿着路径走,如果它们最终找到食物,就会返回并加强它。 然而,随着时间的推移,信息素踪迹开始蒸发,从而降低其吸引力。 蚂蚁沿着路径移动并返回所需的时间越长,信息素蒸发的时间就越长。 相比之下,较短的路径会更快地通过,因此信息素密度仍然很高,因为它在路径上尽可能快地蒸发。 信息素蒸发还具有避免收敛到局部最优解的优点。 如果根本没有蒸发,第一批蚂蚁选择的路径往往对后面的蚂蚁有吸引力。 在这种情况下,解空间的探索将受到限制。

在每一步,蚂蚁从那些导致尚未访问的顶点的边缘中概率性地选择要跟随的边缘。 概率规则受信息素值和启发式信息的影响:信息素和与边关联的启发式值越高,蚂蚁选择该特定边的概率就越高。 从 求解空间 中选择解决方案的具体组成是在每个构造步骤中用概率完成的。

信息素更新

信息素更新的目的是增加与好的解决方案相关的信息素值,并减少与坏解决方案相关的信息素值。通常的更新方法有:

通过信息素蒸发降低所有信息素值,并增加与选定的一组好的解决方案相关的信息素水平。

蚁群算法优点

蚁群优化算法已被用于为旅行商问题生成近乎最优的解决方案。 当图形可能动态变化时,它们比模拟退火和遗传算法方法具有优势; 蚁群算法可以连续运行,实时适应变化。 这在网络路由和城市交通系统中很有趣。蚁群优化算法已成功应用于许多经典的组合优化问题,以及具有随机和/或动态分量的离散优化问题。

粒子群优化

粒子群优化 (PSO) 是一种基于群智能的算法,用于在搜索空间中找到优化问题的解决方案,或在存在目标的情况下对社会行为进行建模和预测。 粒子群优化是一种用于解决问题的随机、基于种群的进化计算机算法。 它是一种基于社会心理学原理的群体智能,提供对社会行为的洞察,并为工程应用做出贡献。 James Kennedy 和 Russell C. Eberhart 于 1995 年首次描述了粒子群优化算法。

粒子群优化 (PSO) 是一种基于群体的随机优化技术,其灵感来自于鸟群或鱼类群落的社会行为。 该系统使用一组随机解决方案进行初始化,并通过更新代来搜索最优值。(和基因算法类似)

PSO 没有交叉和变异等进化算子。 潜在的解决方案,称为粒子,通过跟随当前的最佳粒子飞过问题空间。 与 基因算法相比,PSO 的优点是 PSO 易于实现且需要调整的参数很少。

社会学习

社会影响和社会学习使人能够保持认知一致性。 人们通过与其他人谈论问题来解决问题,当他们互动时,他们的信念、态度和行为会发生变化; 这些变化通常可以被描述为个体在社会认知空间中走向彼此。

粒子群:

粒子群模拟了这种社会优化。 引出了一个问题,并且以适应度函数的形式存在一些评估该问题的建议解决方案的方法。 还定义了通信结构或社交网络,为每个人分配邻居以进行交互。 然后定义为对问题解决方案的随机猜测的一组个体被初始化——候选解决方案。 它们也被称为粒子,因此得名粒子群。

对于这个算法:

改进这些候选解决方案的迭代过程正在启动:粒子迭代地评估候选解决方案的适应度并记住它们获得最大成功的位置。 个体的最佳解称为粒子最佳或局部最佳。 每个粒子都将这些信息提供给它们的邻居。 他们还能够看到他们的邻居在哪些方面取得了成功。 在搜索空间中的移动以这些成功为指导,在试验结束时,人群会趋于解决问题。

粒子:

群体通常由具有位置和速度的多维空间中的粒子建模。 这些粒子经过超空间并具有两个基本的推理能力: 1.他们对自己最佳位置的记忆和 2. 对全局或其邻里最好的了解。 在最小化优化问题中,“最佳”仅表示具有最小目标值的位置。 群体成员相互传达良好的位置,并根据这些良好的位置调整自己的位置和速度。

粒子信息

因此,粒子具有以下信息以对其位置和速度进行适当的更改: 所有人都知道的全局最佳位置,并在群中的任何粒子找到新的最佳位置时立即更新。 粒子通过与群的一个子集通信而获得的最佳邻域。 局部最优,即粒子所见过的最优解。

收敛

随着群体迭代,全局最佳解决方案的适应度提高(因最小化问题而降低)。 可能会发生所有受全局最佳影响的粒子最终接近全局最佳,并且从那时起,尽管 PSO 进行了多次运行,但适应度永远不会提高。 粒子也在搜索空间中移动,靠近全局最佳,而不探索搜索空间的其余部分 - 收敛

改进的步骤

1. 初始种群的随机生成

2. 计算每个对象的适合度值。 这将直接取决于到最佳点的距离。

3. 基于适应度值的种群繁殖。

4. 如果满足要求,则停止。 否则返回

PSO与基因算法

相似性:

两种算法都从一组随机生成的种群开始

两者都有适应度值来评估种群。

两者都更新种群并使用随机技术搜索最优值。

两种系统都不能保证成功。

不同点:

PSO 没有像交叉和变异这样的遗传算子。

粒子以内部速度更新自身。

它们还有内存,这对算法很重要。

与遗传算法(GA)相比,PSO 中的信息共享机制有显着差异。

信息共享方式

在 基因算法 中,染色体彼此共享信息。 所以整个人口像一个群体一样朝着一个最佳区域移动。 在 PSO 中,只有全局最优(或 局部最优)向其他人提供信息。 它是一种单向的信息共享机制。 进化只着眼于最佳解决方案。 与 GA 相比,即使在大多数情况下,即使在局部版本中,所有粒子也倾向于快速收敛到最佳解。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值