给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。
一般来说,删除节点可分为两个步骤:
首先找到需要删除的节点;
如果找到了,删除它。
示例 1:
输入:root = [5,3,6,2,4,null,7], key = 3
输出:[5,4,6,2,null,null,7]
解释:给定需要删除的节点值是 3,所以我们首先找到 3 这个节点,然后删除它。
思路:递归查找要删除的节点,删除该节点。
删除节点有五种情况:
(1)递归遇到了空节点,说明找不到该节点,返回root;
(2)找到了要删除的节点,节点是叶子节点,直接删除该节点,返回空即可;
(3)找到了要删除的节点,节点的左孩子为空,右孩子不为空,删除该节点,返回右孩子;
(4)找到了要删除的节点,节点的右孩子为空,左孩子不为空,删除该节点,返回左孩子;
(5)找到了要删除的节点,节点的左右孩子均不为空,找到右子树中最左边的节点,将要删除节点的左子树移到其下面,作为其左子树,然后root=root->right,删除该节点,返回root。
代码:
class Solution { //450. 删除二叉搜索树中的节点
public:
TreeNode* deleteNode(TreeNode* root, int key) {
if (root == nullptr) return root;
if (root->val == key) {
if (root->left == nullptr && root->right == nullptr) {
delete root;
return nullptr;
}
else if (root->left == nullptr) {
TreeNode* tmp = root->right;
delete root;
return tmp;
}
else if (root->right == nullptr) {
TreeNode* tmp = root->left;
delete root;
return tmp;
}
else {
TreeNode* cur = root->right;
while (cur->left != nullptr) {
cur = cur->left;
}
cur->left = root->left;
TreeNode* tmp = root;
root = root->right;
delete tmp;
return root;
}
}
if (root->val > key)
root->left = deleteNode(root->left, key);
if (root->val < key)
root->right = deleteNode(root->right, key);
return root;
}
};
参考资料:代码随想录