前言
摘要
关于学习工具软件的看法
我们认为最好每次只学习并精通一种工具。如果你潜心研究一种工具,那么会比同时泛泛地学习多个工具掌握得更快。这并不是说你只应该精通一种工具,而是说每次专注于一件事情时,通常你会进步得更快。在整个职业生涯中,你都应该努力学习新事物,但是一定要在充分理解原有知识后,再去学习感兴趣的新知识。
我们认为R 是你开始数据科学旅程的一个非常好的起点,因为它从根本上说就是一种用来支持数据科学的环境。R 不仅仅是一门编程语言,它还是进行数据科学工作的一种交互式环境。为了支持交互性,R 比多数同类语言灵活得多。虽然会导致一些缺点,但这种灵活性的一大好处是,可以非常容易地为数据科学过程中的某些环节量身定制语法。这些微型语言有助于你从数据科学家的角度来思考问题,还可以在你的大脑和计算机之间建立流畅的交流方式。
更多学习提示
如果遇到问题,首先应该求助于Google。通常来说,在查询内容时加上一个“R”,就足以得到与R 相关的结果。如果查不到有用的结果,这意味着目前还没有特定的R 解决方案。Google 特别适合查询错误消息。如果收到一条错误消息,但根本不知道其含义,那就用Google 搜索一下吧!很可能有人遇到过这种错误,而答案就在网上。(如果错误消息不是英文,可以运行Sys.setenv(LANGUAGE = “en”),接着重新运行代码;使用英文错误消息进
行查询更可能获得帮助。)
如果Google 没有奏效,那么可以试试Stack Overflow。先花点时间搜索一下现成的答案;使用[R] 可以将搜索范围限定在与R 相关的问题和答案中。如果没有发现任何有用的内容,那么就准备一个最简单的可重现实例,即reprex。良好的reprex 让你更容易从他人那里获得帮助,而且在准备reprex 时,你往往自己就能发现问题所在。
准备工作
需要4 个工具:R、RStudio、一个称为tidyverse 的R 包集合,以及另外几个R 包