【读书2】【2014】基于MATLAB的雷达信号处理基础(第二版)——雷达散射截面的统计描述(8)

图2.11a比较了指数函数、四自由度chisquare函数、二自由度非中心chi-square函数、威布尔函数和对数正态密度函数,这些函数的RCS方差均为0.5。

Figure 2.11a compares the exponential, fourth-degreechisquare, second-degree non-central chi-square, Weibull, and log-normaldensity functions when all have an RCS variance of 0.5.

在这里插入图片描述
在这里插入图片描述
Figure 2.11. 雷达截面概率密度函数的五种模型比较:(a)线性尺度,(b)对数尺度Comparison of five models forthe probability density function of radar cross section: (a) linear scale, (b)log scale. See text for additional details.

因此,指数分布的平均值为0.5。

The exponentialdistribution then necessarily has a mean of 0.5.

四自由度chi-square函数的平均值为1.0,其它密度函数的平均值也应当选择为1.0。

The fourth-degreechi-square necessarily has a mean of 1.0, and the parameters of the remainingdensity functions have been chosen to give them a mean of 1.0 as well.

图2.11b以半对数刻度重复描绘了相同的数据,这样PDF的拖尾特征就更加明显了。

Figure 2.11b repeatsthe same data on a semilogarithmic scale so that the behavior of the PDF"tails" is more evident.

注意,威布尔和二自由度非中心chi-square分布对于这种参数的选择是非常相似的。

Note that the Weibulland second-degree non-central chi-square distributions are very similar forthis choice of parameters.

chi-square分布也是相似的,但该分布的拖尾相对较小。

The chi-square isalso similar, but has a somewhat less extensive tail to the distribution.

对数正态分布既有最窄的峰值范围,也有最长的拖尾。

The log-normal hasboth the narrowest peak and the longest tail of any of the distributions shownfor this choice of parameters.

与所有其它的分布函数不同,指数分布在平均RCS附近没有明显的峰值。

Unlike all of theothers, the exponential does not have a distinct peak near the mean RCS.

其它分布都有一个明显的峰值,这使得它们适合于描述一个或几个主要散射体的RCS特征。

Each of the othersdoes have a distinct peak, making them suitable for distributions with one or afew dominant scatterers.

——本文译自Mark A. Richards所著的《Fundamentals of Radar Signal Processing(Second edition)》

更多精彩文章请关注微信号:在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值