冒泡排序思想
冒泡排序一种简单的排序算法。
- 从左向右遍历数组,两两比较,若前者大于后者,则交换两者的值,这样第一轮遍历完成(按数组索引0到n-1)最大的数在数组的末尾。
- 从左到右再次遍历数组(0到n-2)可以得到第二大的数。
- 依次遍历,直到数组遍历完成。
冒泡排序示例
下面以数列{20,40,30,10,60,50}为例,演示它的冒泡排序过程(如下图)。
我们首先分析第一趟排序:
- 当i=5,j=0时,a[0]<a[1]。此时,不做任何处理!
- 当i=5,j=1时,a[1]>a[2]。此时,交换a[1]和a[2]的值;交换之后,a[1]=30,a[2]=40。
- 当i=5,j=2时,a[2]>a[3]。此时,交换a[2]和a[3]的值;交换之后,a[2]=10,a[3]=40。
- 当i=5,j=3时,a[3]<a[4]。此时,不做任何处理!
- 当i=5,j=4时,a[4]>a[5]。此时,交换a[4]和a[5]的值;交换之后,a[4]=50,a[3]=60。
第1趟排完之后,最大元素60移到数组最后了,也就是a[5]此时为数组中最大的元素,再进行第二趟排序的时候,只需按照上面的方法排前面5个元素就可以了。这样:
第2趟排序完之后,数列中a[4]、a[5]是有序的。
第3趟排序完之后,数列中a[3]、a[4]、a[5]是有序的。
第4趟排序完之后,数列中a[2]、[3]、a[4]、a[5]是有序的。
第5趟排序完之后,数列中a[1]、a[2]、[3]、a[4]、a[5]是有序的。
第5趟排序之后,整个数列也就是有序的了。
冒泡排序算法实现
根据上面流程,不难写出冒泡排序的代码实现,此处是按升序排列。
#include <stdio.h>
void swap(int * arr, int i, int j){
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
void bubble_sort(int *arr, int n){
int i, j;
for(i = n-1; i > 0; i--){
for(j = 0; j < i; j++){
if(arr[j] > arr[j+1])
swap(arr, j, j+1);
}
}
}
void print(int *arr, int n){
int i;
for(i = 0; i < n; i++){
printf("%d ", arr[i]);
}
}
int main(int argc, char const *argv[])
{
int arr[6] = {20, 30, 40, 10, 60, 50};
int n = sizeof(arr) / sizeof(int);
insert_sort(arr, n);
print(arr, n);
return 0;
}
其实观察上面例子冒泡排序的流程图,第3趟排序之后,数据已经是有序的了;第4趟和第5趟并没有进行数据交换。因此可以对冒泡排序进行优化,使它效率更高一些:添加一个标记,如果一趟遍历中发生了交换,则标记为true,否则为false。如果某一趟没有发生交换,说明排序已经完成,退出。优化后的代码如下:
void bubble_sort2(int *arr, int n)
{
int i,j;
int flag; // 标记一趟是否发生交换
for (i=n-1; i>0; i--)
{
flag = 0; // 初始化标记为0
// 将a[0...i]中最大的数据放在末尾
for (j=0; j<i; j++)
{
if (arr[j] > arr[j+1])
{
swap(arr, j, j+1);
flag = 1; //发生交换,设flag为1
}
}
if (flag==0)
break; // 若无交换,说明数列已有序
}
}
时间复杂度,空间复杂度,稳定性
- 时间复杂度:
冒泡排序的时间复杂度是O(N2):假设被排序的数列中有N个数。遍历一趟的时间复杂度是O(N),需要遍历多少次呢?N-1次,总共遍历n-1 + n-2 + n-3 + n-4 + … + 1 = n * (n - 1) / 2
因此,冒泡排序的时间复杂度O(N2)。因此,冒泡排序的时间复杂度O(N2)。 - 空间复杂度:
冒泡排序的空间复杂度O(1):因为有交换位。 - 稳定性:
冒泡排序是稳定的算法(假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。):它满足稳定算法的定义;所谓算法稳定性指的是对于一个数列中的两个相等的数a[i]=a[j],在排序前,a[i]在a[j]前面,经过排序后a[i]仍然在a[j]前,那么这个排序算法是稳定的。