算法刷题记录——LeetCode篇(4.5) [第341~350题](持续更新)

更新时间:2025-04-01

优先整理热门100及面试150,不定期持续更新,欢迎关注!


347. 前 K 个高频元素

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按任意顺序返回答案。

示例 1:

输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]

示例 2:

输入: nums = [1], k = 1
输出: [1]

提示:

  • 1 <= nums.length <= 105
  • k 的取值范围是 [1, 数组中不相同的元素的个数]
  • 题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的

进阶: 你所设计算法的时间复杂度必须优于 O(n log n) ,其中 n 是数组大小。

方法一:最小堆(优先队列)

使用最小堆维护当前频率最高的k个元素,遍历时保持堆的大小不超过k,时间复杂度为O(n log k)

  1. 统计频率:使用哈希表记录每个元素的出现次数。
  2. 维护最小堆:将元素按频率加入堆,堆大小超过k时移除堆顶(最小频率元素)。
  3. 提取结果:堆中剩余的元素即为前k高的频率元素。

代码实现(Java)

class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        // 统计频率
        Map<Integer, Integer> freqMap = new HashMap<>();
        for (int num : nums) {
            freqMap.put(num, freqMap.getOrDefault(num, 0) + 1);
        }

        // 创建最小堆,按频率升序排序
        PriorityQueue<Map.Entry<Integer, Integer>> heap = new PriorityQueue<>(
            (a, b) -> a.getValue() - b.getValue()
        );

        // 维护堆的大小为k
        for (Map.Entry<Integer, Integer> entry : freqMap.entrySet()) {
            heap.offer(entry);
            if (heap.size() > k) {
                heap.poll();
            }
        }

        // 提取结果
        int[] res = new int[k];
        int idx = 0;
        while (!heap.isEmpty()) {
            res[idx++] = heap.poll().getKey();
        }

        return res;
    }
}

方法二:桶排序

基于频率的桶排序,时间复杂度为O(n),适合处理大数据量。

  1. 统计频率:记录每个元素出现的次数及最大频率。
  2. 构建频率桶:将元素按频率存入对应桶中。
  3. 逆序收集结果:从高频率到低频率遍历桶,收集前k个元素。

代码实现(Java)

class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        // 统计频率
        Map<Integer, Integer> freqMap = new HashMap<>();
        for (int num : nums) {
            freqMap.put(num, freqMap.getOrDefault(num, 0) + 1);
        }

        // 创建桶数组
        List<Integer>[] bucket = new List[nums.length + 1];
        for (Map.Entry<Integer, Integer> entry : freqMap.entrySet()) {
            int freq = entry.getValue();
            if (bucket[freq] == null) {
                bucket[freq] = new ArrayList<>();
            }
            bucket[freq].add(entry.getKey());
        }

        // 收集结果
        int[] res = new int[k];
        int idx = 0;
        for (int i = bucket.length - 1; i >= 0 && idx < k; i--) {
            if (bucket[i] != null) {
                for (int num : bucket[i]) {
                    res[idx++] = num;
                    if (idx == k) break;
                }
            }
        }

        return res;
    }
}

复杂度分析

1、最小堆

  • 时间复杂度:O(n log k),其中n为数组长度,k为结果数量。
    空间复杂度:O(n),哈希表和堆的空间。
  • 优点:空间占用相对较低,适合k较小的情况。
    缺点:当k接近n时,时间复杂度接近O(n log n)

2、桶排序

  • 时间复杂度:O(n),所有操作均为线性时间。
    空间复杂度:O(n),桶数组和哈希表的空间。
  • 优点:时间复杂度严格为O(n),适合大数据量。
    缺点:需要额外空间存储桶,最大频率较高时空间占用大。

声明

  1. 本文版权归 CSDN 用户 Allen Wurlitzer 所有,遵循CC-BY-SA协议发布,转载请注明出处。
  2. 本文题目来源 力扣-LeetCode ,著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值