- 博客(4)
- 收藏
- 关注
转载 优化算法
AdaGrad针对简单的SGD及Momentum存在的问题,2011年John Duchi等发布了AdaGrad优化算法(Adaptive Gradient,自适应梯度),它能够对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。其中,gt表示第t时间步的梯度(向量,包含各个参数对应的偏导数,gt,i表示第i个参数t时刻偏导数)gt2表...
2020-03-02 22:09:14 509
原创 Focal Loss
Focal Loss是 Kaiming 大神团队在他们的论文Focal Loss for Dense Object Detection 提出来的损失函数。Focal Loss的引入主要是为了解决难易样本数量不平衡(注意,有区别于正负样本数量不平衡)的问题,实际可以使用的范围非常广泛,为了方便解释,还是拿目标检测的应用场景来说明:单阶段的目标检测器通常会产生高达100k的候选目标,只有极少数是正样本...
2020-03-01 15:59:29 252
转载 边缘检测算法 之 Canny边缘检测算法的实现
一:Canny简介图像边缘信息主要集中在高频段,通常说图像锐化或检测边缘,实质就是高频滤波。我们知道微分运算是求信号的变化率,具有加强高频分量的作用。在空域运算中来说,对图像的锐化就是计算微分。由于数字图像的离散信号,微分运算就变成计算差分或梯度。图像处理中有多种边缘检测(梯度)算子,常用的包括普通一阶差分,Robert算子(交叉差分),Sobel算子等等,是基于寻找梯度强度。拉普拉斯算子(二阶...
2020-02-28 21:46:48 480
原创 Gap Statistic算法详解
在Kmean算法确定K值的问题里,可以使用手肘法,也可以用Gap statistic 算法。手肘法的缺点是不够自动化,而Gap不再需要“手肘法”式的肉眼判断,而只需要找出使Gap Statistic最大的K值即可。因此,Gap和适用于批量化作业。Gap Statistic 定义为:其中, E 是 logDk的期望,一般使用蒙特卡洛模拟产生。算法的基本过程是,首先在样本所在区域内按照均匀分布随...
2020-02-27 22:43:35 11458 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人