素数筛(线性筛和欧拉筛)

线性筛(最快的筛法)

时间复杂度:O(n)

int Mark[MAXSIZE];  
int prime[MAXSIZE];  

//判断是否是一个素数  Mark 标记数组 index 素数个数  
int Prime(){  
    int index = 0;  
    for(int i = 2; i < MAXSIZE; i++){  
        //如果未标记则得到一个素数  
        if(Mark[i] == 0) prime[++index] = i;  
        //标记目前得到的素数的i倍为非素数  
        for(int j = 1; j <= index && prime[j] * i < MAXSIZE; j++){  
            Mark[i * prime[j]] = 1;  
            if(i % prime[j] == 0) break;  
        }  
    }  
    return index;  
}


欧拉筛

时间复杂度:O(n)

原理:如果判断24是否为一个素数那么用埃氏筛的话起码会重复筛24三次(2*12,3*8,4*6),那欧拉筛就是在此基础上只筛一次就是其最小质因数与因一个合数的乘积。

#include <bits/stdc++.h>//欧拉筛
using namespace std;
bool A[100000001];   int prime[1000001];
int main(){
    int n,m; scanf("%d %d",&n,&m);
    int cnt=0;
    for(int i=2;i<=n;i++){
        if(A[i]==false){
            prime[++cnt]=i;
        }
        for(int j=1;j<=cnt&&i*prime[j]<=n;j++){
            A[i*prime[j]]=true;
            if(i%prime[j]==0) break;//最重要的一步
        }
    }
    for(int i=0;i<m;i++){
        int c; scanf("%d",&c);
        printf("%d\n",prime[c]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值