线性筛(最快的筛法)
时间复杂度:O(n)
int Mark[MAXSIZE];
int prime[MAXSIZE];
//判断是否是一个素数 Mark 标记数组 index 素数个数
int Prime(){
int index = 0;
for(int i = 2; i < MAXSIZE; i++){
//如果未标记则得到一个素数
if(Mark[i] == 0) prime[++index] = i;
//标记目前得到的素数的i倍为非素数
for(int j = 1; j <= index && prime[j] * i < MAXSIZE; j++){
Mark[i * prime[j]] = 1;
if(i % prime[j] == 0) break;
}
}
return index;
}
欧拉筛
时间复杂度:O(n)
原理:如果判断24是否为一个素数那么用埃氏筛的话起码会重复筛24三次(2*12,3*8,4*6),那欧拉筛就是在此基础上只筛一次就是其最小质因数与因一个合数的乘积。
#include <bits/stdc++.h>//欧拉筛
using namespace std;
bool A[100000001]; int prime[1000001];
int main(){
int n,m; scanf("%d %d",&n,&m);
int cnt=0;
for(int i=2;i<=n;i++){
if(A[i]==false){
prime[++cnt]=i;
}
for(int j=1;j<=cnt&&i*prime[j]<=n;j++){
A[i*prime[j]]=true;
if(i%prime[j]==0) break;//最重要的一步
}
}
for(int i=0;i<m;i++){
int c; scanf("%d",&c);
printf("%d\n",prime[c]);
}
return 0;
}