使用MPI并行计算向量内积并结合AVX-512指令集可以显著提高计算效率。以下是一个高效的实现方案:
1. 环境准备
确保你的系统支持AVX-512指令集,并且MPI库已正确安装。
2. 代码实现
#include <mpi.h>
#include <immintrin.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
// 计算向量内积的函数
double dot_product_avx512(const double* a, const double* b, int n) {
__m512d sum = _mm512_setzero_pd();
int i;
for (i = 0; i <= n - 8; i += 8) {
__m512d va = _mm512_loadu_pd(&a[i]);
__m512d vb = _mm512_loadu_pd(&b[i]);
sum = _mm512_fmadd_pd(va, vb, sum);
}
double result = _mm512_reduce_add_pd(sum);
for (; i < n; i++) {
result += a[i] * b[i];
}
return result;
}
int main(int argc, char** argv) {
MPI_Init(&argc, &argv);
int rank, size;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
int n = 1000000; // 向量长度
double *a, *b;
double local_dot = 0.0, global_dot = 0.0;
// 分配内存
a = (double*)_mm_malloc(n * sizeof(double), 64);
b = (double*)_mm_malloc(n * sizeof(double), 64);
// 初始化向量
for (int i = 0; i < n; i++) {
a[i] = (double)rand() / RAND_MAX;
b[i] = (double)rand() / RAND_MAX;
}
// 计算每个进程的局部内积
int local_n = n / size;
int start = rank * local_n;
int end = (rank == size - 1) ? n : start + local_n;
local_dot = dot_product_avx512(a + start, b + start, end - start);
// 全局归约求和
MPI_Reduce(&local_dot, &global_dot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
// 主进程输出结果
if (rank == 0) {
printf("Dot product: %f\n", global_dot);
}
// 释放内存
_mm_free(a);
_mm_free(b);
MPI_Finalize();
return 0;
}
3. 代码说明
-
AVX-512指令集:
- 使用
__m512d
数据类型来处理8个双精度浮点数。 _mm512_loadu_pd
用于加载未对齐的内存数据。_mm512_fmadd_pd
用于执行乘加操作。_mm512_reduce_add_pd
用于将向量中的所有元素相加。
- 使用
-
MPI并行:
- 使用
MPI_Comm_rank
和MPI_Comm_size
获取当前进程的编号和总进程数。 - 将向量均匀分配给各个进程进行计算。
- 使用
MPI_Reduce
将所有进程的局部内积结果归约到主进程。
- 使用
-
内存对齐:
- 使用
_mm_malloc
分配内存,确保内存对齐到64字节,以提高AVX-512指令的效率。
- 使用
4. 编译和运行
使用MPI编译器编译代码:
mpicc -O3 -mavx512f -o dot_product_avx512 dot_product_avx512.c
运行程序:
mpirun -np 4 ./dot_product_avx512
5. 性能优化
- 向量长度:确保向量长度
n
是8的倍数,以充分利用AVX-512指令。 - 进程数:根据系统核心数调整进程数,以达到最佳性能。
- 内存对齐:确保内存对齐,避免不必要的性能损失。
通过上述方法,可以高效地利用MPI和AVX-512指令集并行计算向量内积。