OpenVDS 项目介绍与使用示例
OpenVDS 简介
OpenVDS (Open Volume Data Store) 是一个开源的库和文件格式,专门用于高效存储和访问大规模体积数据(volumetric data)。它最初由 Intel 开发并开源,主要用于地震数据、医学成像、科学计算等领域。
OpenVDS 的主要特点:
- 支持分层存储和数据压缩
- 提供高效的随机访问和切片操作
- 支持多分辨率数据
- 可处理 TB 级的大规模数据
- 提供 C++ 和 Python 接口
安装 OpenVDS
可以通过 pip 安装 Python 版本的 OpenVDS:
pip install openvds
或者从源代码编译安装:
git clone https://github.com/OpenVDS/OpenVDS
cd OpenVDS
mkdir build
cd build
cmake ..
make
make install
使用示例
下面是一个完整的 Python 示例,展示如何创建、写入和读取 OpenVDS 文件:
import openvds
import numpy as np
# 1. 创建一个新的 VDS 文件
def create_vds_file(filename):
# 定义卷数据的维度 (X, Y, Z)
dimensions = (256, 256, 256)
# 创建 VDS 元数据
layout = openvds.VolumeDataLayoutDescriptor.CreateDescriptor(
openvds.Dimensionality.D3,
dimensions,
openvds.VolumeDataChannelDescriptor.Format.Format_R32,
openvds.VolumeDataLayoutDescriptor.BrickSize.BrickSize_32
)
# 创建文件
manager = openvds.VolumeDataManager.create(filename)
vds = manager.create(layout)
# 添加一些元数据
metadata = vds.getMetadataManager()
metadata.setMetadataInt32("Survey/Seismic/InlineCount", dimensions[0])
metadata.setMetadataInt32("Survey/Seismic/CrosslineCount", dimensions[1])
metadata.setMetadataInt32("Survey/Seismic/SampleCount", dimensions[2])
return vds, manager
# 2. 写入数据到 VDS
def write_data_to_vds(vds):
# 创建一个简单的 3D 正弦波模式数据
x = np.linspace(0, 4*np.pi, vds.getLayoutDescriptor().getDimensionNumSamples(0))
y = np.linspace(0, 4*np.pi, vds.getLayoutDescriptor().getDimensionNumSamples(1))
z = np.linspace(0, 4*np.pi, vds.getLayoutDescriptor().getDimensionNumSamples(2))
xx, yy, zz = np.meshgrid(x, y, z, indexing='ij')
data = np.sin(xx) * np.cos(yy) * np.sin(zz)
# 将数据写入 VDS
accessor = openvds.VolumeDataAccessManager(vds)
accessor.write(data, format=openvds.VolumeDataChannelDescriptor.Format.Format_R32)
# 3. 从 VDS 读取数据
def read_data_from_vds(vds):
accessor = openvds.VolumeDataAccessManager(vds)
# 读取整个卷
entire_volume = accessor.read(
(0, 0, 0),
vds.getLayoutDescriptor().getDimensionNumSamples(0),
vds.getLayoutDescriptor().getDimensionNumSamples(1),
vds.getLayoutDescriptor().getDimensionNumSamples(2),
format=openvds.VolumeDataChannelDescriptor.Format.Format_R32
)
print("读取的整个卷形状:", entire_volume.shape)
# 读取一个 2D 切片 (在 Z 轴的第 128 层)
slice_2d = accessor.read(
(0, 0, 128),
vds.getLayoutDescriptor().getDimensionNumSamples(0),
vds.getLayoutDescriptor().getDimensionNumSamples(1),
1,
format=openvds.VolumeDataChannelDescriptor.Format.Format_R32
)
print("读取的切片形状:", slice_2d.shape)
return entire_volume, slice_2d
# 4. 主程序
def main():
filename = "example.vds"
# 创建并写入数据
vds, manager = create_vds_file(filename)
write_data_to_vds(vds)
# 读取数据
entire_volume, slice_2d = read_data_from_vds(vds)
# 关闭文件
manager.close()
print(f"VDS 文件 '{filename}' 创建并测试成功!")
if __name__ == "__main__":
main()
示例解释
-
创建 VDS 文件:
- 定义数据的维度 (256x256x256)
- 设置数据格式 (32位浮点数)
- 添加一些元数据 (如地震调查信息)
-
写入数据:
- 生成一个简单的 3D 正弦波模式数据
- 使用 VolumeDataAccessManager 将 NumPy 数组写入 VDS 文件
-
读取数据:
- 读取整个 3D 体积数据
- 读取一个 2D 切片 (Z=128 的平面)
- 打印读取数据的形状以验证
-
关闭文件:
- 使用 VolumeDataManager 正确关闭文件
这个示例展示了 OpenVDS 的基本用法,包括创建、写入和读取体积数据。在实际应用中,OpenVDS 可以处理更大规模的数据,并支持更复杂的数据访问模式和多分辨率访问。
OpenVDS 项目介绍与使用指南
项目概述
OpenVDS (Open Volumetric Data Store) 是一个开源库,用于高效存储和访问大规模三维体数据。它由 Blueback 开发并开源,旨在解决地震数据、医学影像、科学计算等领域中的大规模体数据存储和访问问题。
主要特点:
- 支持分层多分辨率数据访问
- 提供高效的压缩存储
- 支持多种数据格式和访问模式
- 跨平台支持 (Windows/Linux/macOS)
- 提供 C++ 和 Python 接口
基本使用方法
安装
可以通过 pip 安装 Python 版本:
pip install openvds
或者从源码编译 C++ 版本。
简单示例
以下是一个使用 OpenVDS 读取和写入体数据的简单 Python 示例:
import openvds
import numpy as np
# 创建一个新的 VDS 文件
def create_vds_file(filename):
# 定义体数据维度
dimensions = openvds.DimensionsND.Dimensions_012
axisDescriptors = [
openvds.AxisDescriptor(64, 0, 64, "X", "meter"),
openvds.AxisDescriptor(64, 0, 64, "Y", "meter"),
openvds.AxisDescriptor(64, 0, 64, "Z", "meter")
]
# 创建 VDS 文件
layout = openvds.VolumeDataLayout.Create(openvds.VolumeDataLayout.LittleEndian, dimensions, axisDescriptors)
manager = openvds.VolumeDataManager.Create(layout)
# 写入一些数据
data = np.random.rand(64, 64, 64).astype(np.float32)
manager.write(data)
# 保存到文件
openvds.write(filename, manager)
manager.close()
# 读取 VDS 文件
def read_vds_file(filename):
manager = openvds.open(filename)
# 读取整个体数据
data = manager.read()
print("Data shape:", data.shape)
print("First value:", data[0, 0, 0])
# 读取部分数据 (10-20 在 X 轴,30-40 在 Y 轴,全部 Z 轴)
sub_data = manager.read(slice(10, 20), slice(30, 40), slice(None))
print("Sub data shape:", sub_data.shape)
manager.close()
# 使用示例
filename = "example.vds"
create_vds_file(filename)
read_vds_file(filename)
复杂使用场景
1. 大规模地震数据处理
地震数据通常非常庞大,OpenVDS 可以高效处理这种数据。
def process_seismic_data(input_vds, output_vds):
# 打开输入 VDS
in_manager = openvds.open(input_vds)
# 创建输出 VDS (与输入相同的布局)
layout = in_manager.getLayout()
out_manager = openvds.VolumeDataManager.Create(layout)
# 分块处理数据 (避免内存不足)
chunk_size = 64
for x in range(0, layout.getAxisNumSamples(0), chunk_size):
for y in range(0, layout.getAxisNumSamples(1), chunk_size):
# 读取数据块
data = in_manager.read(
slice(x, x + chunk_size),
slice(y, y + chunk_size),
slice(None)
)
# 处理数据 (例如: 应用滤波器)
processed_data = apply_seismic_filter(data)
# 写入处理后的数据
out_manager.write(processed_data, x, y, 0)
# 保存处理后的数据
openvds.write(output_vds, out_manager)
in_manager.close()
out_manager.close()
def apply_seismic_filter(data):
# 这里可以实现各种地震数据处理算法
# 例如简单的均值滤波
from scipy.ndimage import uniform_filter
return uniform_filter(data, size=3)
2. 医学影像的多分辨率浏览
OpenVDS 支持多分辨率数据,适合医学影像浏览系统。
def setup_medical_image_pyramid(source_file, output_vds):
# 打开原始医学影像 (如 DICOM 转换而来)
source_data = load_medical_image(source_file)
# 创建多分辨率 VDS
levels = 4 # 4个分辨率级别
base_shape = source_data.shape
axisDescriptors = [
openvds.AxisDescriptor(base_shape[0], 0, base_shape[0], "X", "mm"),
openvds.AxisDescriptor(base_shape[1], 0, base_shape[1], "Y", "mm"),
openvds.AxisDescriptor(base_shape[2], 0, base_shape[2], "Z", "mm")
]
layout = openvds.VolumeDataLayout.CreateMultiRes(
openvds.VolumeDataLayout.LittleEndian,
levels,
openvds.DimensionsND.Dimensions_012,
axisDescriptors
)
manager = openvds.VolumeDataManager.Create(layout)
# 为每个分辨率级别填充数据
for level in range(levels):
# 计算当前级别的下采样数据
downsampled = downsample_medical_image(source_data, level)
# 写入当前级别
manager.write(downsampled, level=level)
# 保存 VDS 文件
openvds.write(output_vds, manager)
manager.close()
def downsample_medical_image(data, level):
# 简单的下采样方法
from skimage.transform import pyramid_reduce
result = data
for _ in range(level):
result = pyramid_reduce(result, multichannel=False)
return result
3. 科学计算数据的增量存储
对于长时间运行的科学计算,可以增量保存结果。
def incremental_simulation(output_vds, steps):
# 初始化模拟参数
shape = (256, 256, 256)
axisDescriptors = [
openvds.AxisDescriptor(shape[0], 0, shape[0], "X", "unit"),
openvds.AxisDescriptor(shape[1], 0, shape[1], "Y", "unit"),
openvds.AxisDescriptor(shape[2], 0, shape[2], "Z", "unit")
]
# 创建可扩展的 VDS 布局
layout = openvds.VolumeDataLayout.Create(
openvds.VolumeDataLayout.LittleEndian,
openvds.DimensionsND.Dimensions_012,
axisDescriptors
)
# 启用增量写入
manager = openvds.VolumeDataManager.CreateIncremental(layout)
# 运行模拟并定期保存
for step in range(steps):
# 运行模拟的一步
current_state = run_simulation_step(step)
# 每10步保存一次
if step % 10 == 0:
manager.write(current_state)
print(f"Saved step {step}")
# 最终保存
openvds.write(output_vds, manager)
manager.close()
def run_simulation_step(step):
# 模拟科学计算 (这里用随机数据代替)
return np.random.rand(256, 256, 256).astype(np.float32)
高级功能解释
数据压缩
OpenVDS 支持多种压缩算法以减少存储空间:
# 创建带压缩的 VDS
compression = openvds.VolumeDataLayout.Compression.ZFP
compression_tolerance = 0.001 # 压缩容差
layout = openvds.VolumeDataLayout.Create(
openvds.VolumeDataLayout.LittleEndian,
openvds.DimensionsND.Dimensions_012,
axisDescriptors,
compression=compression,
compressionTolerance=compression_tolerance
)
元数据管理
OpenVDS 支持丰富的元数据存储:
# 添加元数据
manager = openvds.VolumeDataManager.Create(layout)
# 在根属性下添加元数据
root_metadata = manager.getMetadataManager().getRootMetadata()
root_metadata.setString("Description", "This is a sample volumetric dataset")
root_metadata.setInt("Version", 1)
# 创建自定义属性组
group = root_metadata.createGroup("AcquisitionParameters")
group.setFloat("Frequency", 25.0)
group.setString("Date", "2023-05-15")
并行访问
对于高性能应用,OpenVDS 支持并行数据访问:
from concurrent.futures import ThreadPoolExecutor
def parallel_vds_processing(filename):
manager = openvds.open(filename)
layout = manager.getLayout()
def process_chunk(x_start, x_end):
chunk = manager.read(slice(x_start, x_end), slice(None), slice(None))
# 处理数据块...
return processed_chunk
# 使用线程池并行处理
chunk_size = 64
with ThreadPoolExecutor() as executor:
futures = []
for x in range(0, layout.getAxisNumSamples(0), chunk_size):
futures.append(executor.submit(process_chunk, x, x + chunk_size))
# 收集结果
results = [f.result() for f in futures]
manager.close()
return combine_results(results)
性能优化建议
-
分块访问:对于大型数据集,总是分块读取和处理数据,而不是一次性加载整个数据集。
-
使用适当的分块大小:OpenVDS 内部使用分块存储,选择与内部存储分块对齐的访问模式可以提高性能。
-
利用多分辨率数据:对于可视化应用,使用适当的分辨率级别可以显著提高响应速度。
-
选择合适的压缩:根据数据类型选择适当的压缩算法和参数,平衡压缩率和访问速度。
-
缓存常用数据:对于重复访问的数据,考虑在应用层实现缓存机制。
OpenVDS 是一个强大的工具,特别适合需要高效存储和访问大规模三维体数据的应用场景。通过合理利用其功能,可以显著提高体数据处理应用的性能和效率。