铺砖问题

铺砖问题

给定 n ∗ m n*m nm的格子,每个格子被染成黑色或白色。现在要用 1 ∗ 2 1*2 12的砖块覆盖这些格子,要求块与块之间互相不重叠,且覆盖了所有的白色的格子,但不覆盖任意一个黑色格子。求一共有多少种覆盖方法,输出方案数对 M M M取余后的结果。
( 1 ≤ n ≤ 15 , 1 ≤ m ≤ 5 , 2 ≤ M ≤ 1 0 9 ) (1\leq n\leq 15,1\leq m\leq 5,2\leq M\leq 10^{9}) (1n15,1m5,2M109)

输入

n = 3
m = 3
...
.x.
...

输出

2

image.png

题解

由于黑的的格子不能被覆盖,所以used对应的格子总是false。对于白色的格子,如果现在要在(i, j)位置上放置砖块,那么由于总是从左上方的可放的格子开始放置,因此对于(i', j') < (i, j)(按字典序比较)的(i', j')总有used[i'][j'] = true成立。

此外,由于砖块的大小为1*2,因此对于每一列j'在满足 ( i ′ , j ′ ) ≥ ( i , j ) (i',j')\geq (i,j) (i,j)(i,j)的所有j'中,除了最小的i'之外都满足 u s e d [ i ′ ] [ j ′ ] = f a l s e used[i'][j']=false used[i][j]=false。因此,不确定的只有每一列里还没查询到的格子中最上面的一个,共m个。从而可以把这m个格子的状态压缩编码进行记忆搜索,复杂度为 O ( n × m × 2 m ) O(n\times m\times 2^m) O(n×m×2m)

int dp[2][1 << maxn];

void solve() {
    int *crt = dp[0], *next = dp[1];
    crt[0] = 1;
    for (int i = n - 1; i >= 0; i--) {
        for (int j = m - 1; j >= 0; j--) {
            for (int used = 0; used < 1 << m; used++) {
                if ((used >> j & 1) || color[i][j]) {
                    next[used] = crt[used & ~(1 << j)];
                } else {
                    int res = 0;
                    if (j + 1 < m && !(used >> (j + 1) & 1) && !color[i][j + 1]) {
                        res += crt[used | 1 << (j + 1)];
                    }
                    if (i + 1 < n && !color[i + 1][j]) {
                        res += crt[used | 1 << j];
                    }
                    next[used] = res % M;
                }
            }
            swap(crt, next);
        }
    }
    printf("%d\n", crt[0]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值