基于STM32的人脸识别系统设计与实现(正点原子STM32F4探索者开发板)

目录

一 引言

二 总体设计方案

三 硬件准备

四 核心代码


一 引言

        之前自己做设计,因为基本涉及都是软件类开发,很少设计软硬件结合甚至嵌入式项目,为此找过很多资料,也踩过很多坑。特别是STM32这块的资料,很少有资料能一篇概全,花了两周时间到处找资料,网购硬件,模块匹配等问题。基于此,单篇开张记录一下难点与注意事项。文末附完整代码与部分设计思路

二 总体设计方案

人脸识别技术是一种利用人脸生物特征进行身份识别和验证的技术。通过采集目标人脸图像或视频,提取出人脸的特征信息,然后与已有的人脸数据库进行比对识别,从而实现身份认证、门禁控制、安防监控、人脸支付等应用。人脸识别技术主要包括人脸检测、人脸对齐、特征提取、特征匹配等步骤。

首先,人脸检测是人脸识别的第一步,通过算法在图像中定位并标记出人脸的位置,通常使用的方法有Haar级联检测器、卷积神经网络等。其次,人脸对齐是为了保证不同姿态、表情的人脸图像能够被准确提取特征。对齐包括平移、旋转、尺度变换等操作,使得人脸处于标准化的姿势。然后,特征提取是通过某种算法将人脸图像中的特征信息抽象出来,通常采用的是深度学习中的卷积神经网络,在不同层次提取出人脸的高维特征表示。最后,特征匹配是将提取到的人脸特征与数据库中存储的已知人脸特征进行比对匹配,通过计算相似度来确定人脸的身份。

在该系统中总体设计方案主要包括系统结构设计、硬件设计和软件设计三个方面。以下是针对基于STM32的人脸识别系统设计与实现论文的总体设计方案简单描述。

在系统结构设计中,该系统主要包括三个模块:摄像头模块、STM32控制模块和显示模块。摄像头模块用于采集人脸图像,传输给STM32控制模块进行人脸检测和识别。STM32控制模块负责接收图像数据,进行人脸特征提取、匹配识别,并控制显示模块输出结果。

在硬件设计方面,选择适用于嵌入式系统的STM32系列微控制器作为主控制芯片,结合高清晰度、高帧率的摄像头模块进行人脸图像采集。另外,设计存储模块用于存储用户的人脸数据和系统所需信息,保证系统正常运行。

在软件设计方面,采用人脸识别算法移植,使用正点原子官方提供的ATKFREC.lib静态库文件。搭建基于STM32的嵌入式系统平台,实现人脸图像采集、处理及控制。设计交互友好、直观的用户界面,便于用户管理系统中的人脸数据、查看识别结果等操作。

通过以上总体设计方案,基于STM32的人脸识别系统将实现从人脸图像采集到识别结果展示的全流程,涵盖了硬件、软件和算法等方面的设计与实现。总体设计方案旨在确保系统功能完整、性能稳定,并具备良好的用户体验,为最终实现一套高效、快速、准确的人脸识别系统奠定基础。

三 硬件准备

        1.STM32F4探索者开发板(带液晶屏,ST-LINK,电源适配器等,官方一套买下即可)

        2.OV2640摄像头模块(对标STM32F4)

OV2640模块实物图

OV2640模块组原理图

        3.Windows7以上电脑(需安装STM32F4串口下载软件(FLYMCU),Keil5 MDK)

                VSCODE可选(代码阅读性强,也可直接使用Keil5 MDK开发工具,VSCODE需安装扩展工具)

        4.TF SD卡模块

图3.6  TF卡接口

图中TF CARD为TF卡接口,采用4位SDIO方式驱动,理论上最大速度可以达到24MB/S,非常适合需要高速存储的情况。

实验流程图

四 核心代码

//读取原始图片数据

//dbuf:数据缓存区

//xoff,yoff:要读取的图像区域起始坐标

//xsize:要读取的图像区域宽度

//width:要读取的宽度(宽高比恒为3:4)  

void frec_get_image_data(u16 *dbuf,u16 xoff,u16 yoff,u16 xsize,u16 width)

{

int w, h;

u16 height=width*4/3;

float scale=(float)xsize/width;

for(h=0;h<height;h++)

{

for(w=0;w<width;w++)

{

dbuf[h*width+w]=LCD_ReadPoint(xoff+w*scale,yoff+h*scale);

  }

}

}
//显示图片

//x,y,w,h:图片显示区域

//data:图片数据缓存区

void frec_show_picture(u16 x, u16 y, u16 w, u16 h, u16 *data)

{

u16 i, j;

for (i = 0; i < h; i++)

{

for (j = 0; j < w; j++)

{

LCD_Fast_DrawPoint(x + j, y + i, *data);

data ++;

}

}

}
//读取人脸识别所需的数据

//index:要读取的数据位置(一张脸占一个位置),范围:0~MAX_LEBEL_NUM-1

//buf:要读取的数据缓存区首地址

//size:要读取的数据大小(size=0,则表示不需要读数据出来)

//返回值:0,正常

//    其他,错误代码

u8 atk_frec_read_data(u8 index,u8* buf,u32 size)

{

u8* path;

FIL *fp;

u32 fr;

u8 res;

path=atk_frec_malloc(30); //申请内存

fp=atk_frec_malloc(sizeof(FIL)); //申请内存

if(!fp)

{

atk_frec_free(path);

return ATK_FREC_MEMORY_ERR;

}

sprintf((char*)path,ATK_FREC_DATA_PNAME,index);

res=f_open(fp,(char*)path,FA_READ);

if(res==FR_OK&&size)

{

res=f_read(fp,buf,size,&fr); //读取文件

if(fr==size)res=0;

else res=ATK_FREC_READ_WRITE_ERR;

}

f_close(fp);

if(res)res=ATK_FREC_READ_WRITE_ERR;

atk_frec_free(path);

atk_frec_free(fp);

return res;

}

pbkcolor=gui_memex_malloc(200*80*2);//申请背景色缓存

if(pbkcolor==0)continue; //内存申请失败

frec_get_image_data(frec_dev.databuf,frec_dev.xoff,frec_dev.yoff,frec_dev.width,30);

app_read_bkcolor((lcddev.width-200)/2,(lcddev.height-80)/2,200,80,pbkcolor);//读取背景色

window_msg_box((lcddev.width-200)/2,(lcddev.height-80)/2,200,80,(u8*)frec_remind_msg_tbl[11][gui_phy.language],(u8*)APP_REMIND_CAPTION_TBL[gui_phy.language],16,0,0,0);//显示失败

   reg_time=0;

  res=atk_frec_recognition_face(frec_dev.databuf,&person);

if(res==ATK_FREC_MODEL_DATA_ERR)

{

window_msg_box((lcddev.width-200)/2,(lcddev.height-80)/2,200,80,(u8*)frec_remind_msg_tbl[12][gui_phy.language],(u8*)APP_REMIND_CAPTION_TBL[gui_phy.language],16,0,0,0);//显示失败

delay_ms(600);

  }else if(res==ATK_FREC_UNREC_FACE_ERR)

{

window_msg_box((lcddev.width-200)/2,(lcddev.height-80)/2,200,80,(u8*)frec_remind_msg_tbl[13][gui_phy.language],(u8*)APP_REMIND_CAPTION_TBL[gui_phy.language],16,0,0,0);//显示失败

delay_ms(600);

}else

{  

ptemp=frec_node_getnode_index(head,person);//得到节点信息

if(ptemp)

{

frec_node_free(ptemp,0); //释放节点内容   

app_recover_bkcolor((lcddev.width-200)/2,(lcddev.height-80)/2,200,80,pbkcolor);//恢复背景色

appplay_frec_show_result(ptemp,&frec_dev,reg_time*10); //显示识别结果

}    

}

gui_memex_free(pbkcolor);

超市智能存储柜系统是一种基于物联网技术的智能化存储管理系统,主要应用于超市、便利店等零售场所。其组成结构包括硬件和软件两个方面。 硬件组成结构: 1. 存储柜:存储柜是系统的核心部分,用于存储商品和物品,可以根据需要设置不同大小和形状的储物格。存储柜可以根据需要采用智能锁等安全设备,保障商品的安全。 2. 传感器:传感器用于监测存储柜内部的环境,例如温度、湿度、光线等参数。通过传感器采集到的数据,系统可以根据需要进行自动控制和调节。 3. 门禁设备:门禁设备用于控制存储柜的进出,通常采用RFID读卡器或人脸识别等技术,保障存储柜内商品的安全。 4. 控制器:控制器是系统的控制中心,用于控制存储柜的开关、温度、湿度等参数。控制器可以根据需要采用单片机、微处理器等技术,具有较高的控制精度和稳定性。 5. 通信模块:通信模块用于实现系统内部各个组件间的数据传输和通信,例如Wi-Fi、蓝牙等技术。 软件组成结构: 1. 存储管理系统:存储管理系统用于对存储柜内的商品进行管理和监控,包括商品的分类、入库、出库等操作。 2. 数据处理模块:数据处理模块用于对传感器采集到的数据进行处理和分析,例如对温度、湿度等参数进行调节和控制。 3. 用户界面:用户界面是系统的交互界面,用户可以通过界面进行商品的查询、购买、取货等操作。 系统工作过程: 1. 用户通过界面选择需要购买的商品,并进行支付。 2. 存储管理系统根据用户的购买记录,控制存储柜的门禁设备打开对应的储物格。 3. 用户可以通过门禁设备取出购买的商品。 4. 传感器采集到存储柜内部的环境数据,数据处理模块根据需要对温度、湿度等参数进行控制和调节。 5. 系统可以对商品进行自动补货和调度,保障商品的充足供应。 以上就是超市智能存储柜系统的组成结构、各组成模块的作用、系统工作过程等内容,通过这些模块的协同作用,可以实现对存储柜内商品的智能化管理和监控。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值