基于STM32的人脸识别系统设计与实现(正点原子STM32F4探索者开发板)

目录

一 引言

二 总体设计方案

三 硬件准备

四 核心代码


一 引言

        之前自己做设计,因为基本涉及都是软件类开发,很少设计软硬件结合甚至嵌入式项目,为此找过很多资料,也踩过很多坑。特别是STM32这块的资料,很少有资料能一篇概全,花了两周时间到处找资料,网购硬件,模块匹配等问题。基于此,单篇开张记录一下难点与注意事项。文末附完整代码与部分设计思路

二 总体设计方案

人脸识别技术是一种利用人脸生物特征进行身份识别和验证的技术。通过采集目标人脸图像或视频,提取出人脸的特征信息,然后与已有的人脸数据库进行比对识别,从而实现身份认证、门禁控制、安防监控、人脸支付等应用。人脸识别技术主要包括人脸检测、人脸对齐、特征提取、特征匹配等步骤。

首先,人脸检测是人脸识别的第一步,通过算法在图像中定位并标记出人脸的位置,通常使用的方法有Haar级联检测器、卷积神经网络等。其次,人脸对齐是为了保证不同姿态、表情的人脸图像能够被准确提取特征。对齐包括平移、旋转、尺度变换等操作,使得人脸处于标准化的姿势。然后,特征提取是通过某种算法将人脸图像中的特征信息抽象出来,通常采用的是深度学习中的卷积神经网络,在不同层次提取出人脸的高维特征表示。最后,特征匹配是将提取到的人脸特征与数据库中存储的已知人脸特征进行比对匹配,通过计算相似度来确定人脸的身份。

在该系统中总体设计方案主要包括系统结构设计、硬件设计和软件设计三个方面。以下是针对基于STM32的人脸识别系统设计与实现论文的总体设计方案简单描述。

在系统结构设计中,该系统主要包括三个模块:摄像头模块、STM32控制模块和显示模块。摄像头模块用于采集人脸图像,传输给STM32控制模块进行人脸检测和识别。STM32控制模块负责接收图像数据,进行人脸特征提取、匹配识别,并控制显示模块输出结果。

在硬件设计方面,选择适用于嵌入式系统的STM32系列微控制器作为主控制芯片,结合高清晰度、高帧率的摄像头模块进行人脸图像采集。另外,设计存储模块用于存储用户的人脸数据和系统所需信息,保证系统正常运行。

在软件设计方面,采用人脸识别算法移植,使用正点原子官方提供的ATKFREC.lib静态库文件。搭建基于STM32的嵌入式系统平台,实现人脸图像采集、处理及控制。设计交互友好、直观的用户界面,便于用户管理系统

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值