
深度学习实战(进阶)
文章平均质量分 94
专栏面向已经了解深度学习基础知识的读者,旨在帮助读者深入学习深度学习的更高级概念、算法、方法和技术,掌握构建更加复杂和强大的深度学习模型所需的知识和技能。该专栏包括空洞卷积神经网络、BERT、transformer、GPT、注意力机制、生成模型、T5等模型的高阶知识。
微学AI
人工智能高级研发者,名校硕士学历毕业,拥有15项AI领域发明专利,主攻深度学习实战案例、机器学习实战案例、大模型实战项目,研究方向包括:深度学习应用技巧,Pytorch搭建模型,机器学习经典模型,计算机视觉,自然语言处理,知识图谱,大模型实战(包括:ChatGLM、通义千问、百川、LLaMA、书生等开源模型的微调技巧、Qlora微调、提示词工程、思维链、RAG技术、LangChain框架、智能体应用项目、大模型私有化部署)。项目主要运用于医疗健康、政府文档、教育、金融、生物学、物理学、企业管理等领域。
展开
-
深度学习实战107-基于Qwen3+GraphRAG+Agent的智能文档管理系统:精准问答与决策支持
在当今信息爆炸的时代,企业面临海量文档的管理与利用挑战。传统文档管理系统虽然提供了存储和检索功能,但缺乏对文档内容的深度理解与分析能力,更难以实现基于知识的决策支持。基于多模态大模型Qwen3、GraphRAG技术与Agent框架构建的智能文档管理系统,能够突破传统限制,实现文档内容的精准解析、知识图谱的自动构建、复杂关系的推理分析以及决策建议的生成,为企业知识管理带来革命性变革。原创 2025-05-19 17:11:15 · 180 阅读 · 0 评论 -
大模型的实践应用43-基于Qwen3(32B)+LangChain框架+MCP+RAG+传统算法的旅游行程规划系统
本报告将阐述基于大模型Qwen3(32B)、LangChain框架、MCP协议、RAG技术以及传统算法构建的智能旅游行程规划系统。该系统通过整合多种技术优势,实现了用户需求的精准分析、景点的智能推荐以及行程的优化生成,同时确保了实时数据调用的安全性和系统运行的高效性。系统充分利用Qwen3的320亿参数规模和128K上下文窗口,结合LangChain的模块化设计,实现了从需求理解到方案输出的完整闭环。原创 2025-05-16 16:05:35 · 247 阅读 · 0 评论 -
中小学生智能高效学习系统:基于大模型Qwen3(32B)+langchain框架+MCP+RAG+传统算法进行研发
本文基于大模型Qwen3(32B)+langchain框架+MCP协议+RAG+传统算法的中小学生智能学习系统设计与实现。该系统将教材内容转化为动态互动资源,提供个性化学习路径。我会从项目背景、架构设计、操作流程到代码实现进行系统性规划。原创 2025-05-14 13:54:05 · 502 阅读 · 0 评论 -
大模型的实践应用42-大模型无感式知识学习,持续输入前沿知识系统:Qwen3(32B)+langchain框架+MCP(大模型上下文协议)+RAG+传统算法
大模型辅助学习系统通过整合Qwen3(32B)大模型、LangChain框架、MCP协议及RAG技术,构建了一个智能教育平台,提供无感式学习体验。系统采用四层架构设计:知识获取层从多源数据中采集信息,知识处理层通过RAG技术进行结构化处理,学习服务层实现个性化学习路径规划,用户交互层通过自然对话和场景化设计实现无感式知识输入。核心模块包括模型调用、知识库构建和Agent框架集成,支持动态切换推理模式、混合检索策略和上下文感知的智能交互。该系统通过模块化设计和标准化接口,确保高并发下的稳定运行,并支持不同规模原创 2025-05-13 15:46:55 · 503 阅读 · 0 评论 -
大模型的实践应用41-天气预测与分析决策系统:Qwen3(32B)+langchain框架+MCP(大模型上下文协议)+RAG+传统算法
大家好,我是微学AI,今天给大家介绍一下大模型的实践应用41-Qwen3(32B)+langchain框架+MCP(大模型上下文协议)+RAG+传统算法研发天气预测与分析决策系统。本项目构建一个基于大模型Qwen3(32B)、LangChain框架、MCP协议、RAG技术以及传统算法的天气预测与分析决策系统。该系统通过多源数据融合、混合推理模式和智能工具调用,实现从数据采集到决策输出的全流程智能化,解决传统天气预测系统数据碎片化、处理效率低、服务同质化和决策支持弱的痛点,为公众、农业、交通等不同行业提供精准原创 2025-05-12 16:04:04 · 443 阅读 · 0 评论 -
大模型的实践应用40-医疗体检报告解读系统开发方案:Qwen3+LangChain框架+MCP上下文协议+RAG技术
医疗体检报告解读系统结合了Qwen3大模型、LangChain框架、MCP上下文协议和RAG技术,旨在解决体检报告解读效率低、专业术语难理解等问题。系统通过分层架构设计,包括数据层、模型层、交互层和应用层,实现从数据收集、预处理到AI解读、风险评估和报告生成的完整流程。该系统能够高效准确地解读体检报告,降低漏诊风险,提高医疗决策效率,同时确保数据安全和隐私保护。通过整合多种技术优势,该系统不仅符合市场需求,也响应了政策导向,具有显著的市场潜力与技术可行性。原创 2025-05-12 09:29:59 · 77 阅读 · 0 评论 -
大模型的实践应用39-Qwen3(72B)+langchain框架+MCP(大模型上下文协议)+RAG+传统算法等研发数学教学管理与成绩提升系统
在2025年AI技术快速发展的背景下,大模型在教育领域的应用潜力巨大。本文介绍了基于通义千问Qwen3(72B)大模型、LangChain框架、MCP协议和RAG技术,结合传统算法研发的数学教学管理与成绩提升系统。该系统通过整合Qwen3的数学推理和代码生成能力,构建了一个智能化教学管理平台,能够精准分析学生问题、动态生成个性化教学路径、自动评估学习效果,并支持多模态交互。系统采用分层架构设计,包括数据层、知识库层、模型层和应用层,通过MCP协议实现模型与外部工具的协同工作,显著提升了数学教学效率和学生成绩原创 2025-05-09 15:30:27 · 191 阅读 · 0 评论 -
深度学习实战106-大模型LLM+股票MCP Server的股票分析和投资建议应用场景
大模型LLM+股票MCP服务为股票分析和投资建议带来了新的技术手段和应用场景。通过将大模型的语言处理能力与MCP服务的实时数据获取和工具调用能力相结合,可以为投资者提供更全面、准确、个性化的股票分析和投资建议,帮助投资者更好地把握市场机会,降低投资风险。然而,该技术在实际应用中还面临一些挑战,如数据质量、模型准确性、法律法规等问题,需要进一步研究和解决。原创 2025-04-25 16:00:27 · 67 阅读 · 0 评论 -
深度学习实战105-利用LSTM+Attention模型做生产车间中的铝合金生产时的合格率的预测应用
大家好,我是微学AI,今天给大家介绍一下深度学习实战106-利用LSTM+Attention模型做生产车间中的铝合金生产时的合格率的预测应用。 本项目利用LSTM+Attention模型对铝合金生产合格率进行预测,不仅在理论上具有创新性和可行性,而且在实际应用中也具有重要的价值和广阔的应用前景。通过该模型的应用,可以显著提高铝合金生产的效率和产品质量,降低生产成本,增强企业的市场竞争力,推动制造业向智能化、数字化方向发展。原创 2025-04-08 17:13:18 · 264 阅读 · 0 评论 -
深度学习实战104-知识图谱与RAG技术(GraphRAG)+通义千问32b在医疗领域的应用场景探究
大家好,我是微学AI,今天给大家介绍一下深度学习实战104-知识图谱与RAG技术(GraphRAG)+通义千问32b在医疗领域的应用场景探究, 知识图谱(KG)是一种语义网络,它以图的形式表示知识,节点代表实体,边代表实体之间的关系。例如在一个电影知识图谱中,节点可能是电影、演员、导演等,边可以是“参演”“执导”等关系。RAG(Retrieval - Augmented Generation)技术则是一种将信息检索与语言生成相结合的技术,旨在利用外部知识源来增强语言模型的回答能力。原创 2025-03-14 11:53:04 · 237 阅读 · 0 评论 -
大模型的实践应用36-基于AI Agent和通义千问大模型,支持多轮问答的智能问数和数据分析的应用场景
这个AI Agent的核心功能是通过多轮对话精准把握用户的数据查询需求,这一过程如同一场细致的需求挖掘之旅。在现代商业环境中,数据量庞大且复杂,例如一家大型电商企业,每天都会产生海量的交易记录、用户信息等数据。不同部门的人员对数据有着不同的需求,市场部门可能关注不同地区的销售趋势以制定营销策略,财务部门可能着重于成本和利润相关指标来进行财务分析。多轮对话机制就像是一把精准的钥匙,逐步开启用户内心深处对于数据查询的真正需求之门。原创 2025-03-04 09:09:27 · 608 阅读 · 0 评论 -
大模型的实践应用35-基于Qwen-32b模型与知识图谱技术、RAG等实现数据的归因分析,结合实践项目与应用场景
大模型(如通义千问14b,32b)能够理解和生成自然语言文本,通过训练大量数据学习到了丰富的知识和语言模式。RAG(检索-增强-生成)技术通过在大规模知识库中检索相关信息,结合大模型的生成能力,提供更为准确和丰富的回答。原创 2025-01-04 14:34:17 · 190 阅读 · 0 评论 -
深度学习实战103-基于KDD Cup 99数据集的搭建神经网络的检测系统(NIDS),通过对网络流量数据进行分析,提供完整代码
接下来,我们定义一个全连接神经网络模型。return x# 创建数据集和数据加载器# 初始化模型通过以上步骤,我们实现了一个基于PyTorch的简单网络入侵检测系统。这个系统使用KDD Cup 99数据集进行训练和评估。实际应用中,您可以根据需求调整模型结构、超参数以及数据预处理方法。希望对大家有所帮助!如果有任何问题或需要进一步的解释,请随时咨询。原创 2024-12-26 15:52:26 · 806 阅读 · 0 评论 -
深度学习实战102-基于深度学习的网络入侵检测系统,利用各种AI模型和pytorch框架实现网络入侵检测
在明确了研究背景后,我们需要设定明确的项目目标。本项目的核心目标是开发一个高精度、低延迟的网络入侵检测系统检测准确率:达到95%以上,确保系统能够有效识别各类已知和未知的入侵行为。响应时间:控制在毫秒级范围内,以实现实时监测和快速响应。模型鲁棒性:在面对不同类型的网络环境和攻击手法时,系统需保持稳定的性能输出。可扩展性:系统设计需考虑未来可能面临的新型威胁,便于后续升级和维护。原创 2024-12-25 09:10:49 · 658 阅读 · 1 评论 -
深度学习实战101-基于生成对抗网络GAN在医学核磁共振跨模态的应用,以及性能优化,并结合代码实例进行说明
生成对抗网络(GAN)是一种革命性的深度学习模型,在医学影像领域展现出巨大潜力。其核心在于生成器(G)和判别器(D)的对抗博弈生成器:负责将随机噪声转化为逼真的样本判别器:则判断输入是否来自真实数据集这种动态平衡推动双方持续改进,最终使生成器能够创造出高质量的合成图像。GAN的基本结构包含两个关键组件:生成器和判别器,它们通过相互竞争的方式共同提高性能。生成器的目标是创造难以区分真假的样本,而判别器则努力识别出这些伪造品。原创 2024-12-16 11:09:21 · 837 阅读 · 0 评论 -
深度学习实战100-大模型LLM之混合专家模型MoE的原理,以及代码实现过程
在大型语言模型(LLM)的发展中,混合专家(MoE)架构扮演着关键角色。LoRAMoE作为一种创新的微调框架,通过引入MoE架构有效缓解了LLM在微调过程中可能出现的知识遗忘问题。引入多个专家,每个专家专注于特定任务领域使用低秩矩阵表示专家参数,大幅减少可训练参数数量实现动态权重分配,在不同任务间灵活切换这种设计不仅提高了模型的多任务性能,还增强了其在新任务上的适应能力和泛化能力。通过MoE架构,LLM能够在保持原有知识的基础上,更好地应对不断变化的任务需求,实现了模型性能和效率的双赢。原创 2024-11-06 11:27:05 · 482 阅读 · 0 评论 -
深度学习实战99-关于大模型LLM框架的实际应用,包括langchain,vllm,Ollama,airLLM等框架
在人工智能领域的快速发展背景下,大模型应用开发框架(LLM框架)应运而生。这些框架旨在简化大模型的开发、部署和管理流程。通过提供标准化的接口和优化的执行策略,LLM框架能够显著提升模型训练和推理的效率,同时降低资源消耗。这种框架不仅提高了开发者的生产力,还使得复杂的大规模模型变得更加易于管理和扩展。资源优化:通过并行计算和分布式存储技术,最大化硬件效能。易用性提升:提供友好界面和详尽文档,加速开发进程。灵活性增强:支持多种深度学习框架和编程语言,适应多样化需求。稳定性保障。原创 2024-11-05 09:14:09 · 599 阅读 · 0 评论 -
深度学习实战98-利用AI大模型实现学生智能学习助手智能体,包括学生设计学习方案,学习状态分析,学习成绩下降归因分析,学习成绩提升技巧
近年来,随着大数据技术的快速发展和计算能力的显著提升,人工智能(AI)领域迎来了前所未有的发展机遇。特别是在自然语言处理(NLP)、计算机视觉以及语音识别等方向上,基于深度学习的方法取得了突破性的进展。这些进步不仅推动了AI应用从实验室走向日常生活,也为构建更加复杂、强大的AI系统——即所谓的“大模型”提供了可能。AI大模型通常指参数量巨大(可达数十亿甚至更多),能够执行多种任务而无需重新训练的基础模型。原创 2024-11-01 10:43:32 · 860 阅读 · 0 评论 -
深度学习实战97-通过AI智能体实现智能订餐系统研发,通过自然语言进行外卖点餐,选择外卖规格,生成订单
目的:基于上述研究结果确定核心功能。内容自然语言理解和生成能力菜单展示与搜索订单创建与管理支付接口集成客户反馈收集输出:一份详尽的功能规格说明书。原创 2024-10-30 16:53:35 · 281 阅读 · 0 评论 -
深度学习实战96-GCN网络的架构以及GCN在股票领域的应用,给出了数据和核心代码实现
大家好,我是微学AI,今天给大家介绍一下深度学习实战96-GCN网络的架构以及GCN在股票领域的应用,给出了数据和核心代码实现。在股票市场分析中,GCN模型展现出了强大的潜力,特别是在股价预测方面。这种基于图结构的深度学习方法能够有效捕捉股票之间的复杂关系,为我们提供了一个全新的视角来理解和预测股市动态。原创 2024-10-28 15:16:42 · 402 阅读 · 0 评论 -
深度学习实战95-跨框架应用中onnx的作用,pytorch模型转onnx的实战
在当今快速发展的深度学习领域,技术的迭代与工具的选择直接影响着研究者和开发者的工作效率。面对众多的深度学习框架(如TensorFlow、PyTorch、Caffe等),模型的互操作性成为了亟待解决的问题。正是在这样的背景下,ONNX(Open Neural Network Exchange)应运而生,为跨平台、跨框架的模型交换提供了统一的标准。ONNX是一种开放的模型交换格式,它允许AI模型在不同的深度学习框架之间进行无损转换。原创 2024-10-16 11:40:32 · 441 阅读 · 0 评论 -
深度学习实战94-基于图卷积神经网络GCN模型的搭建以及在金融领域的场景
随着大数据时代的到来,复杂网络数据的处理成为研究热点,尤其是在金融领域,关系数据的分析对于风险评估、信贷审批、投资策略制定等方面至关重要。传统的机器学习方法往往基于向量化的输入,难以直接处理图结构数据中的丰富关联信息。在此背景下,图神经网络(Graph Neural Networks, GNN)应运而生,其中图卷积网络(Graph Convolutional Networks, GCN)作为GNN的一个重要分支,自2016年Thomas N. Kipf等人提出以来,迅速成为处理图数据的标准工具之一。原创 2024-10-15 16:06:58 · 686 阅读 · 0 评论 -
深度学习实战93-基于BiLSTM-CRF模型的网络安全知识图谱实体识别应用
在信息时代,网络安全已成为维护国家安全、保护个人隐私和保障企业利益的重要基石。随着网络攻击手段的日益复杂多变,传统的防护措施逐渐显得力不从心。网络安全知识图谱作为一种先进的数据组织形式,通过实体、属性和关系三元组的形式描述网络空间中的各类实体及其相互作用,为网络安全分析提供了强大的支撑。它不仅能够帮助安全分析师快速理解攻击模式、追踪威胁源,还能促进知识共享,提高响应速度,从而有效提升网络安全防御的智能化水平。在自然语言处理领域,序列标注任务如命名实体识别(NER)是构建高质量知识图谱的关键技术之一。原创 2024-09-21 13:46:24 · 848 阅读 · 0 评论 -
深度学习实战92-关于多尺度深度特征融合模型的个人信用风险预测与应用
随着全球金融市场的不断扩张和互联网技术的迅猛发展,信贷业务已成为推动经济增长的关键力量之一。个人信贷产品,如消费贷款、房贷、车贷等,因能够满足不同人群的即时资金需求而日益普及。然而,信贷机构在享受市场繁荣的同时,也面临着一个核心难题:如何有效预测个人信用风险,以控制不良贷款率,确保资产质量与业务稳健。在个人信用风险预测领域,模型的评估是确保其准确性和可靠性的重要步骤。原创 2024-09-19 16:48:16 · 979 阅读 · 0 评论 -
机器学习实战23-基于手动搭建的神经网络模型对旅客上座率预测项目的研究
大家好,我是微学AI,今天给大家介绍一下机器学习实战23-基于手动搭建的神经网络模型对旅客上座率预测项目的研究。本文围绕基于神经网络模型的旅客上座率预测模型研究项目展开。首先介绍项目背景,阐述了准确预测旅客上座率的重要性。接着详细讲解了运用到的神经网络模型原理,为读者呈现其工作机制。文中给出了旅客上座率数据样例,增强了读者对实际数据的直观感受。原创 2024-09-12 19:26:10 · 1564 阅读 · 0 评论 -
深度学习实战91-利用时空特征融合模型的城市网络流量预测分析与应用
在数字化时代,城市网络流量作为衡量信息交流活跃度的关键指标,其有效管理和预测对于优化网络资源配置、提升用户体验具有重要意义。随着物联网、5G通信技术的飞速发展,城市网络流量呈现出前所未有的复杂性与动态性,这对传统的流量管理与预测方法提出了严峻挑战。本部分旨在探讨基于时空特征融合的城市网络流量预测项目的背景,分析当前预测现状,指出存在的问题,并强调时空特征融合的必要性。在当今数据驱动的时代,准确预测城市网络流量对于优化网络资源分配、提升用户体验及减少运营成本至关重要。原创 2024-09-19 08:48:53 · 967 阅读 · 0 评论 -
深度学习实战90-基于多尺度混合注意力卷积神经网络的关系抽取模型
在信息爆炸的时代,每天都有海量的文本数据产生,包括社交媒体、新闻报道、学术文献等。如何从这些非结构化或半结构化的数据中高效地提取有用信息,成为大数据时代的核心挑战之一。关系抽取作为自然语言处理(NLP)领域的一个重要分支,旨在识别文本中实体之间的语义关系,如“人-职位”、“公司-总部位置”等。这种能力对于知识图谱构建、信息检索、问答系统、智能推荐等多个应用场景至关重要。通过关系抽取,我们可以将文本中的隐含知识转化为结构化的数据形式,为后续的信息利用提供便利,极大提升数据的价值。原创 2024-09-14 14:09:49 · 666 阅读 · 0 评论 -
深度学习实战89-基于改造后的长短期记忆网络LSTM 的猪肉价格预测模型研究
大家好,我是微学AI,今天给大家介绍一下深度学习实战89-基于改造后的长短期记忆网络LSTM 的猪肉价格预测模型研究。本文围绕基于改造后的长短期记忆网络 LSTM 的猪肉价格预测模型展开研究。首先介绍项目背景,阐述进行猪肉价格预测的重要性。接着详细讲解改造后的 LSTM 模型原理,为预测提供理论基础。原创 2024-09-13 09:55:46 · 691 阅读 · 0 评论 -
深度学习实战88-基于注意力机制优化的WGAN-BiLSTM模型应用于信用卡欺诈识别方法
大家好,我是微学AI,今天给大家介绍一下本文介绍了基于注意力机制优化的WGAN-BiLSTM模型应用于信用卡欺诈识别方法。该文章详细阐述了该模型的架构,包括其独特设计及优势。展示了相关公式以深入理解其原理,同时给出了代码实现过程,便于实际应用。对所用数据集进行了全面介绍,包括其结构特点。原创 2024-09-12 14:17:58 · 1043 阅读 · 0 评论 -
深度学习实战87-高中数学自适应测试系统研究与应用研发,前后台页面设计
大家好,我是微学AI ,今天给大家介绍一下深度学习实战87-高中数学自适应测试系统研究与应用研发,前后台页面设计。高中数学自适应测试系统旨在通过精准评估学生能力,用最少的题目发现其薄弱环节,并提供定制化的学习计划,帮助学生快速提升成绩。同时,系统结合了AI大模型实现自动判卷、生成报告,减轻教师负担,并支持个性化作业布置,使教学更加高效。学生可以清晰了解自身学习状态,教师也能获得精准的学生画像,实现差异化教学。原创 2024-09-10 08:49:32 · 250 阅读 · 0 评论 -
深度学习实战86-高中数学问答大模型介绍、支持将批量的latex数学公式生成pdf的过程详解
MathGPT是一个基于人工智能的高中数学教材智能问答系统,它结合了自然语言处理、数学知识图谱、机器学习模型、LaTeX和PDF生成技术等多种先进技术。实时互动:MathGPT能够实时响应学生的提问,提供详细的解答和步骤解析,模仿了传统课堂中的师生互动,但提供了更加即时和个性化的响应。个性化学习:通过分析学生的学习进度和问答记录,MathGPT能够为学生提供个性化的学习资源和练习题目,帮助他们针对性地加强薄弱环节。用户友好。原创 2024-08-26 17:28:16 · 918 阅读 · 0 评论 -
深度学习实战85-AI文本检测之识别判断是AI创作的内容还是人类创作的内容,你的论文是否是大模型生成的呢?
大家好,我是微学AI,今天给大家介绍一下深度学习实战85-AI文本检测之识别判断是AI创作的内容还是人类创作的内容,你的论文是否是大模型生成的呢?本文将基于RoBERTa模型的AI文本检测技术,旨在识别文本是否由AI生成。RoBERTa模型通过动态掩码机制、更大规模的数据集、去除NSP任务等改进,提升了模型的鲁棒性和泛化能力。原创 2024-08-12 15:58:13 · 657 阅读 · 0 评论 -
深度学习实战84-数学公式和中文混合高精度识别实战,实现数学题目以及公式识别系统(latexOCR)
本文详细介绍了数学公式识别系统的核心代码实现,不仅展示了如何利用深度学习技术解决实际问题,还深入探讨了其背后的数学原理。这一系统不仅为数学公式的学习和研究提供了便利,也为数字化时代的信息处理开辟了新的可能。未来,随着技术的不断进步,我们期待看到更多创新的应用涌现,让数学之美更加普及和易于理解。原创 2024-07-28 11:40:16 · 504 阅读 · 0 评论 -
计算机视觉的应用14-目标检测经典算法之YOLOv1-YOLOv5的模型架构与改进过程详解,便于记忆
大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用14-目标检测经典算法之YOLOv1-YOLOv5的模型架构与改进过程详解,便于记忆。YOLO(You Only Look Once)是一种目标检测深度学习模型。想象一下,传统的目标检测方法就像侦探一样,需要仔细观察整个场景,逐个研究每个细节来找出目标。但YOLO却跟超级英雄一样,只需要一眼扫过整个画面,就能立即捕捉到所有的目标。YOLO可以实现如此高效的目标检测,是因为它将目标检测问题转化为了一个回归问题。它通过一个神奇的神经网络,在一次前向传播中,原创 2023-09-13 16:28:20 · 2144 阅读 · 0 评论 -
深度学习实战83-人脸检测识别技术MTCNN模型介绍与项目实战分析
MTCNN模型:一种级联卷积神经网络,专为高效人脸检测设计,包含PNet、RNet和ONet三个阶段,分别用于生成候选区域、细化边界框和最终识别。Siamese network:双流网络架构,用于计算图像间的相似度,特别适用于人脸识别和验证任务。损失函数:多种损失函数对比,如center loss用于聚类中心的优化,softmax loss用于分类,L-softmax和A-softmax则是softmax的变体,增强模型的区分能力。原创 2024-07-18 17:18:47 · 1036 阅读 · 0 评论 -
大模型的实践应用25-LLama3模型模型的架构原理,以及手把手教你搭建LLama3模型
大家好,我是微学AI,今天给大家介绍一下大模型的实践应用25-LLama3模型模型的架构原理,以及手把手教你搭建LLama3模型。LLaMA 3 是Meta公司开发的最新一代大规模语言模型,其架构在很大程度上继承了LLaMA 2的设计,但对某些关键组件进行了改进和优化。原创 2024-07-06 11:14:24 · 350 阅读 · 0 评论 -
深度学习实战82-新的研究方向:大模型与图模型结合生成大型图模型,大图模型相关挑战和机遇的观点
大家好,我是微学AI,今天给大家介绍一下深度学习实战82-新的研究方向:大模型与图模型结合生成大型图模型,大图模型相关挑战和机遇的观点。随着人工智能的飞速发展,大型模型已成为人工智能领域最新的突破性成就。在图方面,大型模型尚未取得与自然语言处理和计算机视觉等其他领域相同的成功水平。为了促进大型图模型的应用,我将介绍开发大型图模型相关的挑战和机遇。原创 2024-06-28 16:40:35 · 372 阅读 · 0 评论 -
深度学习实战81-基于大模型的Chatlaw法律问答中的知识图谱融合思路,数据集说明、以及知识图谱对ChatLaw的影响介绍
大家好,我是微学AI,今天给大家介绍一下深度学习实战81-基于大模型的Chatlaw法律问答中的知识图谱融合思路,数据集说明、以及知识图谱对ChatLaw的影响介绍。基于大模型的Chatlaw法律问答系统融合了知识图谱,以提高法律咨询服务的可靠性和准确性。Chatlaw通过结合知识图谱与人工筛选,构建了一个高质量的法律数据集来训练模型。这种模型利用不同的专家来解决各种法律问题,优化了法律答复的准确性。原创 2024-06-28 15:43:07 · 774 阅读 · 0 评论 -
深度学习实战80-基于大模型的RAG新思路,构建多种RAG的应用,包括PlanRAG、RichRAG、Multi-Meta-RAG、R^2AG、InstructRAG、SynCheck.
大家好,我是微学AI,今天给大家介绍一下深度学习实战80-基于大模型的RAG新思路,构建多种RAG的应用,包括PlanRAG、RichRAG、Multi-Meta-RAG、R^2AG、InstructRAG、SynCheck、FoRAG、StackRAG Agent。这些方法都利用了自然语言处理NLP技术来增强强化学习算法的性能。原创 2024-06-25 17:39:15 · 230 阅读 · 0 评论 -
深度学习实战79-ChatTTS实现有感情有笑声的语音,本地部署运行,无法分辨是人还是机器的语音
大家好,我是微学AI,今天给大介绍一下深度学习实战79-ChatTTS实现有感情有笑声的语音,本地部署运行,难以分辨是人还是机器的语音。ChatTTS是文本转语音模型,例如LLM助手对话任务。它支持英文和中文两种语言。ChatTTS模型代码已经开源,但是很多人启动不起来,会遇到各种的问题,我将在这篇文章中给出详细代码进行实现过程,几步就可以搞定。文章的最后已经打包好的安装包,解压文件,文件中找到exe文件,需要通过管理员运行,运行完成会出现ChatTTS的界面,这时表示启动成功。原创 2024-06-11 17:34:20 · 366 阅读 · 0 评论