堆排序:利用堆的数据结构而设计的一种排序算法,是一种选择排序。它的最坏,最好,平均时间复杂度均为O(nlogn),是不稳定排序。
堆结构
堆是完全二叉树
性质:每个结点值大于等于其左右孩子结点的值成为大顶锥;每个结点值小于或等于其左右孩子结点的值,称为小顶锥。
对堆中的结点按层进行编号,将这种逻辑结构映射到数组中如下。
在二叉树中:
根节点下标=左节点下标-1/2
根节点下标=右节点下标-2/2
因此:
左节点下标=根节点下标*2+1
右节点下标=根节点下标*2+2
所以用公式描述大堆小堆的定义
大顶锥:arr[i] >= arr[2*i+1] && arr[i] >= arr[2*i+2]
小顶锥:arr[i] <= arr[2*i+1] && arr[i] <= arr[2*i+2]
堆排序基本思想
先将待排序列构造成一个大顶锥,这时,整个序列的最大值就是锥顶的根节点。将其与数组的末尾元素进行交换,此时数组的末尾就为最大值,然后将剩余的n-1个元素重新构造成一个
大顶锥,这样锥顶的根节点就为n个元素的次大值,如此反复进行,可以得到一个有序序列的数组。
1.构造初始堆。将给定无序序列构造成一个大顶锥(一般升序采用大顶锥,降序采用小顶锥)。1-1.假设给定的无需序列结构如下:
int []arr = {4,6,8,5,9};
1-2.从最后一个非叶子结点开始,即下面的6结点,从左往右,从下至上进行调整
最后一个非叶子结点在数组中的下标为arr.length/2-1,这里的arr.length/2-1表示的是非叶子结点的个数,从0开始计算到arr.length/2-1。
1-3.找到第二个非叶子结点4,4和9交换。
1-4.上一步的交换导致了子根 [4,5,6]结构混乱,交换4和6。
至此,已经将一个无序序列构造成了一个大顶锥。
for(int i=arr.length/2-1;i>=0;i--){
//从第一个非叶子结点从下至上,从右至左调整结构
adjustHeap(arr,i,arr.length);
}
//以上for循环中调用的方法
public static void adjustHeap(int []arr,int i,int length){
int temp = arr[i];//先取出当前非叶子结点
for(int k=i*2+1;k<length;k=k*2+1){//从i结点的左子结点开始,也就是k = 2i+1处开始
if(k+1<length && arr[k]<arr[k+1]){//k+1<length表示存在右子结点,并且如果左子结点小于右子结点,k指向右子结点
k++;
}
if(arr[k] >temp){//如果子节点(左子节点或者右子节点中较大的那个)大于父节点,将该较大的子节点值赋给父节点
arr[i] = arr[k];
i = k;
}else{
break;
}
}
arr[i] = temp;//将temp值放到最终的位置
}
2.将堆顶元素与数组的末尾元素进行交换,使得末尾元素最大。然后重复步骤1,继续调整堆,再将堆顶元素与末尾元素进行交换,得到第二大元素,重复以上步骤。
2-1将堆顶元素9和末尾元素4进行交换。
2-2重新调整堆结构,使其满足堆定义。
2-3将堆顶元素8与末尾元素5进行交换,得到第二大元素8。
2-4继续进行调整交换,最终使得整个序列有序。
//2.调整堆结构+交换堆顶元素与末尾元素
for(int j=arr.length-1;j>0;j--){
swap(arr,0,j);//将堆顶元素与末尾元素进行交换
adjustHeap(arr,0,j);//重新对堆进行调整,这里传入参数j的目的是为了每次排好序,将最后一个最大的数排除在外,再次对剩下的元素建大顶锥
//i = 0直接从大顶锥的顶部进行排序
}
//交换元素
public static void swap(int []arr,int a ,int b){
int temp=arr[a];
arr[a] = arr[b];
arr[b] = temp;
}
总结堆排序
- 将无序序列构建成一个堆,根据升序降序选择大顶锥或小顶锥;
- 将堆顶元素与末尾元素交换,将最大元素”沉”到数组末端;
- 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复进行调整+交换步骤,直到整个序列有序。
完整代码
package Heap_Sort;
/*
* 堆排序:将数据看成是完全二叉树,根据完全二叉树特性来进行排序
* 以下是堆排序的下标
* 0
* 1 2
* 3 4 5 6
* 在二叉树中
* 左节点下标=根节点下标*2+1
* 右节点下标=根节点下标*2+2
*/
import java.util.Random;
import java.util.Arrays;
/**
* 堆排序demo
*/
public class HeapSort {
public static void main(String []args){
int []arr = {9,8,7,6,5,4,3,2,1};
sort(arr);
System.out.println(Arrays.toString(arr));
}
public static void sort(int []arr){
//1.构建大顶堆
for(int i=arr.length/2-1;i>=0;i--){
//从第一个非叶子结点从下至上,从右至左调整结构
adjustHeap(arr,i,arr.length);
}
System.out.print("array:");
for(int i = 0;i<arr.length;i++) {
System.out.print(arr[i]+" ");
}
//2.调整堆结构+交换堆顶元素与末尾元素
for(int j=arr.length-1;j>0;j--){
swap(arr,0,j);//将堆顶元素与末尾元素进行交换
adjustHeap(arr,0,j);//重新对堆进行调整,这里传入参数j的目的是为了每次排好序,将最后一个最大的数排除在外,再次对剩下的元素建大顶锥
//i = 0直接从大顶锥的顶部进行排序
}
System.out.print("sort array:");
for(int i = 0;i<arr.length;i++) {
System.out.print(arr[i]+" ");
}
}
/**
* 调整大顶堆(仅是调整过程,建立在大顶堆已构建的基础上)
* @param arr
* @param i
* @param length
*/
public static void adjustHeap(int []arr,int i,int length){
int temp = arr[i];//先取出当前元素i
for(int k=i*2+1;k<length;k=k*2+1){
//从i结点的左子结点开始,也就是2i+1处开始,这里加上k<length;k=k*2+1的原因是,上一次排序后,沉下来的元素可能再一次小于它的子节点
if(k+1<length && arr[k]<arr[k+1]){//如果左子结点小于右子结点,k指向右子结点
k++;
}
if(arr[k] >temp){//如果子节点大于父节点,将子节点值赋给父节点(不用进行交换)
arr[i] = arr[k];
i = k;
}else{
break;
}
}
arr[i] = temp;//将temp值放到最终的位置
}
/**
* 交换元素
* @param arr
* @param a
* @param b
*/
public static void swap(int []arr,int a ,int b){
int temp=arr[a];
arr[a] = arr[b];
arr[b] = temp;
}
}