图建立之邻接表
图的建立是需要通过传入图对应的信息才能建立的,而邻接矩阵和邻接表就是这个作用。
邻接表是对邻结矩阵的改进,在邻接矩阵中才用一个一维数组记录顶点,一个二维数组记录顶点所对应的边,如果当图中每个顶点之间连线很少的情况下,同样要依次遍历二维数组中的该顶点与其他顶点的关系来确定边,导致效率低下。
而邻接表则是一个结构体指针数组,该结构体又是一个链表的头结点,即这个数组中只记录了该结点已连接的顶点,遍历效率较高。
无/有向图邻接表的建立:
链表描述:头结点、对应顶点的数据
结点描述:next指针,对应数组的下标
代码中的顶点数据由’A’的ascii开始,即ABCD, 图的结构(A-C)(B-C)(C-D)
有向图原理与无向图相似,只是多了入度和出度的值。图的模型:<A,B> <B,D> <D,C> <C,A>
对于初学者代码有点复杂。。。这里算尽力简化了…
#include <stdio.h>
#include <stdlib.h>
#define MAX_VEXNUM 100
typedef char vexType;
typedef struct EDGENODE{
int index;//对应邻接表数组下标
struct EDGENODE *next;//边表结点next指针
}EdgeNode, *p_EdgeNode;
typedef struct VEXNODE{
vexType vertex;//顶点
p_EdgeNode first;//边表头指针
int edge_num;//边数
}vexnode, *p_vexnode;
//邻接表
typedef struct ADJLISK{
p_vexnode vexlist;//顶点数组
int vex_num;//顶点数
}AdjList, *p_AdjList;
typedef struct NODIR_GRAPH_VEX{
struct NODIR_GRAPH_VEX **next;//用作指针数组,指向所有连接的顶点
char vertex;//顶点数值
int num;//当前结点的连接数
}nodir_graph_vex, *p_nodir_graph_vex;
typedef struct DIR_GRAPH_VEX{
struct DIR_GRAPH_VEX **next;//用作指针数组,指向所有被连接顶点
char vertex;//顶点数值
int in_degree, out_degree; //出入度
}dir_graph_vex, *p_dir_graph_vex;
void init_adjlist(p_AdjList *list)
{
int i,j;
p_EdgeNode tmp = NULL;//缓存终端输入的边表结点信息
*list = (p_AdjList )malloc(sizeof(AdjList));
printf("请输入顶点数:");
again2:
scanf("%d", &(*list)->vex_num);
if((*list)->vex_num > MAX_VEXNUM){
printf("不能大于100!请重新输入\n");
goto again2;
}
(*list)->vexlist = (p_vexnode)malloc(sizeof(vexnode) * (*list)->vex_num);
for( i = 0; i<(*list)->vex_num; i++ ){
printf("请输入第%d个顶点的数值:",i+1);
scanf(" %c", &(*list)->vexlist[i].vertex );
}
//接表
//边表初始化
for(i=0; i<(*list)->vex_num; i++){
printf("请输入第%d个顶点连接的边数: ",i+1);
scanf("%d", &(*list)->vexlist[i].edge_num);
if((*list)->vexlist[i].edge_num == 0)
continue;
tmp = (p_EdgeNode)calloc( sizeof(EdgeNode) ,(*list)->vexlist[i].edge_num );
printf("与第%d个连接的顶点下标:",i+1);
for(j=0; j<(*list)->vexlist[i].edge_num; j++){
//边信息初始化
scanf("%d",&tmp[j].index);
tmp[j].next = (*list)->vexlist[i].first;
(*list)->vexlist[i].first = &tmp[j];
}
}
printf("\t\t已输入完毕!\n");
printf("**************************邻接表***********************\n");
for( i = 0; i<(*list)->vex_num; i++ )
{
tmp = (*list)->vexlist[i].first;
printf("顶点%c的边表: %c->", (*list)->vexlist[i].vertex, (*list)->vexlist[i].vertex);
for(j=0; j<(*list)->vexlist[i].edge_num; j++){
printf("%c->", (*list)->vexlist[tmp->index].vertex);
tmp = tmp->next;
}
printf("null\n");
}
}
void create_nodir_graph(p_nodir_graph_vex *graph, p_AdjList list)
{
int i,j;
p_EdgeNode tmp1;//连接用
p_nodir_graph_vex tmp2;//打印用
//根据邻接表初始化顶点
*graph = (p_nodir_graph_vex)calloc(sizeof(nodir_graph_vex) , list->vex_num);
for( i=0; i<list->vex_num; i++ )
{
(*graph)[i].next = (p_nodir_graph_vex *)malloc(sizeof(p_nodir_graph_vex));
(*graph)[i].vertex = list->vexlist[i].vertex;
(*graph)[i].num = list->vexlist[i].edge_num;
*((*graph)[i].next) = (p_nodir_graph_vex )malloc(sizeof(nodir_graph_vex) * (*graph)[i].num );
}
//连接各顶点
for( i=0; i<list->vex_num; i++ )
{
tmp1 = list->vexlist[i].first;
for(j=0; j<list->vexlist[i].edge_num; j++)
{
(*(*graph)[i].next)[j] = (*graph)[tmp1->index];
tmp1 = tmp1->next;
}
}
//打印每个结点的连接情况
for( i=0; i<list->vex_num; i++ )
{
printf("顶点%c的连接情况:", (*graph)[i].vertex);
tmp2 = (*(*graph)[i].next);
for(j=0; j<list->vexlist[i].edge_num; j++)
{
printf("(%c,%c)\t", (*graph)[i].vertex, tmp2[j].vertex);
}
printf("\n");
}
}
void create_dir_graph(p_dir_graph_vex *graph, p_AdjList list)
{
int i,j;
p_EdgeNode tmp1;//连接用
p_dir_graph_vex tmp2;//打印用
*graph = (p_dir_graph_vex)calloc(sizeof(dir_graph_vex) , list->vex_num);//定义若干顶点
for( i=0; i<list->vex_num; i++ )
{
(*graph)[i].next = (p_dir_graph_vex *)malloc(sizeof(p_dir_graph_vex));
(*graph)[i].vertex = list->vexlist[i].vertex;
*((*graph)[i].next) = (p_dir_graph_vex )malloc(sizeof(dir_graph_vex) * list->vexlist[i].edge_num );
}
//连接各顶点
for( i=0; i<list->vex_num; i++ )
{
tmp1 = list->vexlist[i].first;
for(j=0; j<list->vexlist[i].edge_num; j++)
{
(*(*graph)[i].next)[j] = (*graph)[tmp1->index];
(*graph)[i].out_degree++;
(*graph)[tmp1->index].in_degree++;
tmp1 = tmp1->next;
}
}
//打印每个结点的连接情况
for( i=0; i<list->vex_num; i++ )
{
printf("顶点%c出度%d入度%d,连接情况:", (*graph)[i].vertex, (*graph)[i].out_degree, (*graph)[i].in_degree);
tmp2 = (*(*graph)[i].next);
for(j=0; j<list->vexlist[i].edge_num; j++)
{
printf("<%c,%c>\t", (*graph)[i].vertex, tmp2[j].vertex);
}
printf("\n");
}
}
int main()
{
int flag;
p_AdjList adjlist = NULL;
init_adjlist(&adjlist);
printf("\t**************************************\n\t\t1:无向图\t2:有向图\n\t**************************************\n请输入数字:");
again:
scanf(" %d", &flag);
if(flag != 1 && flag != 2){
printf("请输入1或2\n");
goto again;
}
if(flag == 1){
p_nodir_graph_vex graph;
create_nodir_graph(&graph, adjlist);
}
else{
p_dir_graph_vex graph;
create_dir_graph(&graph, adjlist);
}
return 0;
}
总结
无向图中,如果仅仅是对图的建立会比较合理,但如果我们需要删除一条边时,则需将两个顶点对应的链表结构中的结点释放,在连接成新链表,效率低下,因此引入了邻接多重表进行优化,后续会讲到。
有向图的邻接表虽然性能好,遍历效率高,但是我们发现他每次遍历结点的过程中,只可知道当前结点的出度,入度无法得知,只能在遍历完毕后才能确定每个顶点的入度。因此引入了十字链表,将邻接表和逆邻接表组合时候,那么我们在遍历过程中,就可以得知当前结点从哪里入,或者可以从哪里出。