图的建立(邻接表)

图建立之邻接表

图的建立是需要通过传入图对应的信息才能建立的,而邻接矩阵和邻接表就是这个作用。

邻接表是对邻结矩阵的改进,在邻接矩阵中才用一个一维数组记录顶点,一个二维数组记录顶点所对应的边,如果当图中每个顶点之间连线很少的情况下,同样要依次遍历二维数组中的该顶点与其他顶点的关系来确定边,导致效率低下。
而邻接表则是一个结构体指针数组,该结构体又是一个链表的头结点,即这个数组中只记录了该结点已连接的顶点,遍历效率较高。

无/有向图邻接表的建立:

链表描述:头结点、对应顶点的数据
结点描述:next指针,对应数组的下标
代码中的顶点数据由’A’的ascii开始,即ABCD, 图的结构(A-C)(B-C)(C-D)
有向图原理与无向图相似,只是多了入度和出度的值。图的模型:<A,B> <B,D> <D,C> <C,A>
对于初学者代码有点复杂。。。这里算尽力简化了…

#include <stdio.h>
#include <stdlib.h>

#define MAX_VEXNUM 100

typedef char vexType;

typedef struct EDGENODE{
	int index;//对应邻接表数组下标
	struct EDGENODE *next;//边表结点next指针
}EdgeNode, *p_EdgeNode;

typedef struct VEXNODE{
	vexType vertex;//顶点
	p_EdgeNode first;//边表头指针
	int edge_num;//边数
}vexnode, *p_vexnode;

//邻接表
typedef struct ADJLISK{
	p_vexnode vexlist;//顶点数组
	int vex_num;//顶点数
}AdjList, *p_AdjList;

typedef struct NODIR_GRAPH_VEX{
	struct NODIR_GRAPH_VEX **next;//用作指针数组,指向所有连接的顶点
	char vertex;//顶点数值
	int num;//当前结点的连接数
}nodir_graph_vex, *p_nodir_graph_vex;

typedef struct DIR_GRAPH_VEX{
	struct DIR_GRAPH_VEX **next;//用作指针数组,指向所有被连接顶点
	char vertex;//顶点数值
	int in_degree, out_degree; //出入度
}dir_graph_vex, *p_dir_graph_vex;

void init_adjlist(p_AdjList *list)
{
	int i,j;
	p_EdgeNode tmp = NULL;//缓存终端输入的边表结点信息
	*list = (p_AdjList )malloc(sizeof(AdjList));
	printf("请输入顶点数:");
again2:
	scanf("%d", &(*list)->vex_num);
	if((*list)->vex_num > MAX_VEXNUM){
		printf("不能大于100!请重新输入\n");
		goto again2;
	}
	(*list)->vexlist = (p_vexnode)malloc(sizeof(vexnode) * (*list)->vex_num);
	for( i = 0; i<(*list)->vex_num; i++ ){
		printf("请输入第%d个顶点的数值:",i+1);
		scanf(" %c", &(*list)->vexlist[i].vertex );
	}
	//接表
	//边表初始化
	for(i=0; i<(*list)->vex_num; i++){
		printf("请输入第%d个顶点连接的边数: ",i+1);
		scanf("%d", &(*list)->vexlist[i].edge_num);
		if((*list)->vexlist[i].edge_num == 0)
			continue;
		tmp = (p_EdgeNode)calloc( sizeof(EdgeNode) ,(*list)->vexlist[i].edge_num );
		printf("与第%d个连接的顶点下标:",i+1);
		for(j=0; j<(*list)->vexlist[i].edge_num; j++){
			//边信息初始化
			scanf("%d",&tmp[j].index);
			tmp[j].next = (*list)->vexlist[i].first;
			(*list)->vexlist[i].first = &tmp[j];
		}
	}
	printf("\t\t已输入完毕!\n");
	printf("**************************邻接表***********************\n");
	for( i = 0; i<(*list)->vex_num; i++ )
	{
		tmp = (*list)->vexlist[i].first;
		printf("顶点%c的边表: %c->", (*list)->vexlist[i].vertex, (*list)->vexlist[i].vertex);
		for(j=0; j<(*list)->vexlist[i].edge_num; j++){
			printf("%c->", (*list)->vexlist[tmp->index].vertex);
			tmp = tmp->next;
		}
		printf("null\n");
	}
}

void create_nodir_graph(p_nodir_graph_vex *graph, p_AdjList list)
{
	int i,j;
	p_EdgeNode tmp1;//连接用
	p_nodir_graph_vex tmp2;//打印用
	//根据邻接表初始化顶点
	*graph = (p_nodir_graph_vex)calloc(sizeof(nodir_graph_vex) , list->vex_num);
	for( i=0; i<list->vex_num; i++ )
	{
		(*graph)[i].next = (p_nodir_graph_vex *)malloc(sizeof(p_nodir_graph_vex));
		(*graph)[i].vertex = list->vexlist[i].vertex;
		(*graph)[i].num = list->vexlist[i].edge_num;
		*((*graph)[i].next) = (p_nodir_graph_vex )malloc(sizeof(nodir_graph_vex) * (*graph)[i].num );
	}
	//连接各顶点
	for( i=0; i<list->vex_num; i++ )
	{
		tmp1 = list->vexlist[i].first;
		for(j=0; j<list->vexlist[i].edge_num; j++)
		{
			(*(*graph)[i].next)[j] = (*graph)[tmp1->index];
			tmp1 = tmp1->next;
		}
	}
	//打印每个结点的连接情况
	for( i=0; i<list->vex_num; i++ )
	{
		printf("顶点%c的连接情况:", (*graph)[i].vertex);
		tmp2 = (*(*graph)[i].next);
		for(j=0; j<list->vexlist[i].edge_num; j++)
		{
			printf("(%c,%c)\t", (*graph)[i].vertex, tmp2[j].vertex);
		}
		printf("\n");
	}
}

void create_dir_graph(p_dir_graph_vex *graph, p_AdjList list)
{
	int i,j;
	p_EdgeNode tmp1;//连接用
	p_dir_graph_vex tmp2;//打印用
	*graph = (p_dir_graph_vex)calloc(sizeof(dir_graph_vex) , list->vex_num);//定义若干顶点
	for( i=0; i<list->vex_num; i++ )
	{
		(*graph)[i].next = (p_dir_graph_vex *)malloc(sizeof(p_dir_graph_vex));
		(*graph)[i].vertex = list->vexlist[i].vertex;
		*((*graph)[i].next) = (p_dir_graph_vex )malloc(sizeof(dir_graph_vex) * list->vexlist[i].edge_num );
	}
	//连接各顶点
	for( i=0; i<list->vex_num; i++ )
	{
		tmp1 = list->vexlist[i].first;
		for(j=0; j<list->vexlist[i].edge_num; j++)
		{
			(*(*graph)[i].next)[j] = (*graph)[tmp1->index];
			(*graph)[i].out_degree++;
			(*graph)[tmp1->index].in_degree++;
			tmp1 = tmp1->next;
		}
	}
	//打印每个结点的连接情况
	for( i=0; i<list->vex_num; i++ )
	{
		printf("顶点%c出度%d入度%d,连接情况:", (*graph)[i].vertex, (*graph)[i].out_degree, (*graph)[i].in_degree);
		tmp2 = (*(*graph)[i].next);
		for(j=0; j<list->vexlist[i].edge_num; j++)
		{
			printf("<%c,%c>\t", (*graph)[i].vertex, tmp2[j].vertex);
		}
		printf("\n");
	}
}

int main()
{
	int flag;
	p_AdjList adjlist = NULL;
	init_adjlist(&adjlist);
	printf("\t**************************************\n\t\t1:无向图\t2:有向图\n\t**************************************\n请输入数字:");
again:
	scanf(" %d", &flag);
	if(flag != 1 && flag != 2){
		printf("请输入1或2\n");
		goto again;
	}
	if(flag == 1){
		p_nodir_graph_vex graph;
		create_nodir_graph(&graph, adjlist);
	}
	else{
		p_dir_graph_vex graph;
		create_dir_graph(&graph, adjlist);
	}
	return 0;
}

总结

无向图中,如果仅仅是对图的建立会比较合理,但如果我们需要删除一条边时,则需将两个顶点对应的链表结构中的结点释放,在连接成新链表,效率低下,因此引入了邻接多重表进行优化,后续会讲到。

有向图的邻接表虽然性能好,遍历效率高,但是我们发现他每次遍历结点的过程中,只可知道当前结点的出度,入度无法得知,只能在遍历完毕后才能确定每个顶点的入度。因此引入了十字链表,将邻接表和逆邻接表组合时候,那么我们在遍历过程中,就可以得知当前结点从哪里入,或者可以从哪里出。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值