深度学习教程 | 浅层神经网络

深度学习教程 | 浅层神经网络

ShowMeAI查看更多精彩内容


外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

本系列为吴恩达老师《深度学习专项课程(Deep Learning Specialization)》学习与总结整理所得,对应的课程视频可以在这里查看。

引言

ShowMeAI前一篇文章 神经网络基础 中我们对以下内容进行了介绍:

  • 二分类问题、逻辑回归模型及损失函数。
  • 梯度下降算法。
  • 计算图与正向传播及反向传播。
  • 向量化方式并行计算与提效。

本篇内容我们将从浅层神经网络入手,逐步拓展到真正的神经网络模型知识学习。

1.神经网络表示

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

图示为两层神经网络,也可以称作单隐层神经网络(a single hidden layer neural network)。这就是典型的浅层(shallow)神经网络,结构上,从左到右,可以分成三层:

  • 输入层(input layer):竖向堆叠起来的输入特征向量。
  • 隐藏层(hidden layer):抽象的非线性的中间层。
  • 输出层(output layer):输出预测值。

注意:当我们计算网络的层数时,通常不考虑输入层。因此图中隐藏层是第一层,输出层是第二层。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

有一些约定俗成的符号表示,如下:

  • 输入层的激活值为a[0]a{[0]}a[0],隐藏层产生的激活值,记作a[1]a{[1]}a[1]。
  • 隐藏层的第一个单元(或者说节点)就记作a1[1]a^{[1]}_1a1[1],输出层同理。
  • 隐藏层和输出层都是带有参数WWW和bbb的,它们都使用上标[1]来表示是和第一个隐藏层有关,或者上标[2]来表示是和输出层有关。

2.计算神经网络的输出

2.1 两层神经网络

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

接下来我们开始详细推导神经网络的计算过程

我们依旧来看看我们熟悉的逻辑回归,我们用其构建两层神经网络。逻辑回归的前向传播计算可以分解成计算zzz和aaa的两部分。

如果我们基于逻辑回归构建两层神经网络,前向计算从前往后要做2次计算:

  • 从输入层到隐藏层,对应一次逻辑回归运算。
  • 从隐藏层到输出层,对应一次逻辑回归运算。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在每层计算中,我们注意对应的上标和下标:

  • 我们记上标方括号[]^{[ ]}[]表示layer,记下标表示第几个神经元。例如,ai[l]a_i^{[l]}ai[l]表示第lll层的第iii个神经元。
  • 注意,iii从111开始,lll从000开始。

2.2 单个样本计算方式

我们将输入层到隐藏层的计算公式列出来:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

后续从隐藏层到输出层的计算公式为:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

上述每个节点的计算都对应着一次逻辑运算的过程,分别由计算zzz和aaa两部分组成

2.3 向量化计算

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们引入向量化思想提升计算效率,将上述表达式转换成矩阵运算的形式,如下所示:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们这里特别注意一下数据维度:

  • W[1]W^{[1]}W[1]的维度是(4,3)(4,3)(4,3)
  • b[1]b^{[1]}b[1]的维度是(4,1)(4,1)(4,1)
  • W[2]W^{[2]}W[2]的维度是(1,4)(1,4)(1,4)
  • b[2]b^{[2]}b[2]的维度是(1,1)(1,1)(1,1)

2.4 数据集向量化计算

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

上面部分提到的是单个样本的神经网络正向传播矩阵运算过程。对于mmm个训练样本,我们也可以使用向量化矩阵运算的形式来提升计算效率。形式上,它和单个样本的矩阵运算十分相似,比较简单。我们记输入矩阵XXX的维度为(nx,m)(n_x,m)(nx,m),则有:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

上述公式中,Z[1]Z{[1]}Z[1]的维度是(4,m)(4,m)(4,m),4是隐藏层神经元的个数;A[1]A{[1]}A[1]的维度与Z[1]Z{[1]}Z[1]相同;Z[2]Z{[2]}Z[2]和A[2]A^{[2]}A[2]的维度均为(1,m)(1,m)(1,m)。

我们可以这样理解上述的矩阵:行表示神经元个数,列表示样本数目mmm

3.激活函数

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3.1 不同的激活函数与选择

在神经网络中,隐藏层和输出层都需要激活函数(activation function),前面的例子中我们都默认使用Sigmoid函数σ(z)\sigma(z)σ(z)作为激活函数。实际我们有不同的激活函数可以选择,而且它们有各自的优点:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(1) tanh 函数

the hyperbolic tangent function,双曲正切函数

a=ez−e−zez+e−za = \frac{e^z - e{-z}}{ez + e^{-z}}a=ez+e−zez−e−z

优点:函数输出介于(−1,1)(-1,1)(−1,1),激活函数的平均值就更接近0,有类似数据中心化的效果。效果几乎总比Sigmoid函数好(二元分类的输出层我们还是会用Sigmoid,因为我们希望输出的结果介于(0,1)(0,1)(0,1))。

缺点:当zzz趋紧无穷大(或无穷小),导数的梯度(即函数的斜率)就趋紧于0,这使得梯度算法的速度大大减缓。这一点和Sigmoid一样。

(2) ReLU函数

the rectified linear unit,修正线性单元

a=max(0,z)a=max(0,z)a=max(0,z)

优点:当z>0z > 0z>0时,梯度始终为1,从而提高神经网络基于梯度算法的运算速度,收敛速度远大于Sigmoid和tanh。

缺点:当z<0z < 0z<0时,梯度一直为0,但是实际的运用中,该缺陷的影响不是很大。

(3) Leaky ReLU

带泄漏的ReLU

a=max(0.01z,z)a=max(0.01z,z)a=max(0.01z,z)

优点:Leaky ReLU保证在z<0z < 0z<0的时候,梯度仍然不为0。

理论上来说,Leaky ReLU有ReLU的所有优点,但在实际操作中没有证明总是好于ReLU,因此不常用。

总结

在选择激活函数的时候,如果在不知道该选什么的时候就选择ReLU。当然也没有固定答案,要依据实际问题在交叉验证集合中进行验证分析。注意,我们可以在不同层选用不同的激活函数。

3.2 使用非线性激活函数的原因

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

使用线性激活函数和不使用激活函数、无论神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,就成了最原始的感知器了。我们以2层神经网络做一个简单推导,如下:

假设所有的激活函数都是线性的,为了更简单一点,我们直接令激活函数g(z)=zg(z)=zg(z)=z,即a=za=za=z。那么,浅层神经网络的各层输出为:

z[1]=W[1]x+b[1]z{[1]}=W{[1]}x+b^{[1]}z[1]=W[1]x+b[1]

a[1]=z[1]a{[1]}=z{[1]}a[1]=z[1]

z[2]=W[2]a[1]+b[2]z{[2]}=W{[2]}a{[1]}+b{[2]}z[2]=W[2]a[1]+b[2]

a[2]=z[2]a{[2]}=z{[2]}a[2]=z[2]

我们对上述公式中a[2]a^{[2]}a[2]展开计算,得:

a[2]=z[2]=W[2]a[1]+b[2]=W2+b[2]=(W[2]W[1])x+(W[2]b[1]+b[2])=W′x+b′\begin{aligned} a{[2]}=z{[2]} &=W^{[2]} a{[1]}+b{[2]} \ &=W{[2]}\left(W{[1]} x+b{[1]}\right)+b{[2]} \ &=\left(W^{[2]} W^{[1]}\right) x+\left(W^{[2]} b{[1]}+b{[2]}\right) \ &=W^{\prime} x+b^{\prime} \end{aligned}a[2]=z[2]=W[2]a[1]+b[2]=W2+b[2]=(W[2]W[1])x+(W[2]b[1]+b[2])=W′x+b′

上述推导后,我们可以发现a[2]a^{[2]}a[2]仍是输入变量xxx的线性组合!后续堆叠更多的层次,也可以依次类推,这表明,使用神经网络,如果不使用激活函数或使用线性激活函数,与直接使用线性模型的效果并没有什么两样!因此,隐藏层的激活函数必须要是非线性的。

不过,在部分场景下,比如是回归预测问题而不是分类问题,输出值yyy为连续值,输出层的激活函数可以使用线性函数。如果输出yyy恒为正值,则也可以使用ReLU激活函数,这些具体情况具体分析。

3.3 激活函数的导数

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们来看一下不同激活函数的导数,这将在我们反向传播中频繁用到。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

4.神经网络的梯度下降法

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

下面我们来一起看看,神经网络中的梯度计算。

我们依旧以浅层神经网络为例,它包含的参数为W[1]W{[1]}W[1],b[1]b{[1]}b[1],W[2]W{[2]}W[2],b[2]b{[2]}b[2]。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

令输入层的特征向量个数nx=n[0]n_x=n{[0]}nx=n[0],隐藏层神经元个数为n[1]n{[1]}n[1],输出层神经元个数为n[2]=1n^{[2]}=1n[2]=1。则:

  • W[1]W{[1]}W[1]的维度为(n[1],n[0])(n{[1]},n^{[0]})(n[1],n[0])
  • b[1]b{[1]}b[1]的维度为(n[1],1)(n{[1]},1)(n[1],1)
  • W[2]W{[2]}W[2]的维度为(n[2],n[1])(n{[2]},n^{[1]})(n[2],n[1])
  • b[2]b{[2]}b[2]的维度为(n[2],1)(n{[2]},1)(n[2],1)

4.1 神经网络中的梯度下降

上述神经网络的前向传播过程,对应的公式如下图左侧。反向传播过程,我们会进行梯度计算,我们先列出Cost Function对各个参数的梯度,如下图右侧公式。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

其中,np.sum使用到python中的numpy工具库,想了解更多的同学可以查看ShowMeAI图解数据分析 系列中的numpy教程,也可以通过ShowMeAI制作的numpy速查手册 快速了解其使用方法)

4.2 反向传播(拓展补充)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们使用上篇内容 神经网络基础 中的计算图方式来推导神经网络反向传播。回忆我们前面提到的逻辑回归,推导前向传播和反向传播的计算图如下图所示:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

因为多了隐藏层,神经网络的计算图要比逻辑回归的复杂一些,如下图所示。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

综上,对于浅层神经网络(包含一个隐藏层)而言,「单个样本」和「m个训练样本」的反向传播过程分别对应如下的6个表达式(都是向量化矩阵形式):

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

5.随机初始化

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

5.1 全零初始化权重问题

我们在很多机器学习模型中,会初始化权重为0。但在神经网络模型中,参数权重WWW是不能全部初始化为零的,它会带来对称性问题(symmetry breaking problem),下面是分析过程。

假设一个浅层神经网络包含两个输入,隐藏层包含两个神经元。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

如果权重W[1]W{[1]}W[1]和W[2]W{[2]}W[2]都初始化为零,这样使得隐藏层第一个神经元的输出等于第二个神经元的输出,即a1[1]=a2[1]a_1{[1]}=a_2{[1]}a1[1]=a2[1]。容易得到dz1[1]=dz2[1]dz_1{[1]}=dz_2{[1]}dz1[1]=dz2[1],以及dW1[1]=dW2[1]dW_1{[1]}=dW_2{[1]}dW1[1]=dW2[1]。

我们发现:隐藏层两个神经元对应的权重行向量W1[1]W_1{[1]}W1[1]和W2[1]W_2{[1]}W2[1]每次迭代更新都会得到完全相同的结果,W1[1]W_1{[1]}W1[1]始终等于W2[1]W_2{[1]}W2[1],完全对称!这样隐藏层设置多个神经元就没有任何意义了。

当然,因为中间层每次只会有1个偏置项参数bbb,它可以全部初始化为零,并不会影响神经网络训练效果。

5.2 解决方法

上述提到的权重W全部初始化为零带来的问题就是symmetry breaking problem(对称性)。解决方法也很简单:在初始化的时候,WWW参数要进行随机初始化,不可以设置为000。而bbb因为不存在对称性的问题,可以设置为 0。

以 2 个输入,2 个隐藏神经元为例:

python复制代码W = np.random.rand(2,2)* 0.01
b = np.zeros((2,1))

这里将 WWW 的值乘以 0.01(或者其他的常数值)的原因是为了使得权重 WWW 初始化为较小的值,这是因为使用 Sigmoid 函数或者 tanh 函数作为激活函数时:

  • 若WWW 比较小,则 Z=WX+bZ=WX+bZ=WX+b 所得的值趋近于 0,梯度较大,能够提高算法的更新速度。
  • 若 WWW 设置的太大,得到的梯度较小,训练过程因此会变得很慢。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

ReLU 和 Leaky ReLU 作为激活函数时不存在这种问题,因为在大于 0 的时候,梯度均为 1。如果输出层是Sigmoid函数,则对应的权重WWW最好初始化到比较小的值。

参考资料

ShowMeAI系列教程推荐

推荐文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值