自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 代码角度分析DeepFM

代码角度分析DeepFMDeepFM架构程序中的输出FMDEEPself.out数据集XiXvy过程embeddingsy_first_ordery_second_orderDeeploss参考DeepFM架构embedding+Factorization machines(FM)+Deep程序中的输出很明显,又两个部分组成FM+DEEPFM前者由y_first_order与y_second_order组成(对应FM的两个部分)维度分别为特征下标与embedding矩阵的sizeDEE

2020-08-18 17:26:41 353

原创 损失函数loss总结

损失函数loss总结1.What2.常见的损失函数回归任务均方误差补充分类任务交叉熵(cross entropy)3.未完待续1.What在机器学习中,损失函数(loss function)是用来估量模型的预测值f(x)与真实值y的不一致程度。2.常见的损失函数回归任务均方误差一般最常用E(f;D)=1m∑i=1m(f(xi)−yi)2E(f;D)= \frac{1}{m} \sum_{i=1}^{m} (f(x_{i})-y_{i})^2E(f;D)=m1​i=1∑m​(f(xi​)−y

2020-07-10 16:08:23 1296

原创 线性回归,逻辑回归总结

线性模型总结1.线性回归目标loss多元线性回归3.对数线性回归与广义线性模型对数线性回归广义线性模型对数几率回归对数几率函数表现形式loss补充1.线性回归学得f(xi)=ωTxi+b,使得f(x)≃yif(x_{i})=\omega ^ T x_{i} + b,使得f(x)\simeq y_{i}f(xi​)=ωTxi​+b,使得f(x)≃yi​目标拟合数据loss均方误差----->目标(ω∗,b∗)=arg max⁡(ω,b)∑i=1m(f(xi)−yi)2(\omeg

2020-07-09 17:34:33 499

原创 AUC相关问题

AUC相关问题1.What混淆矩阵ROC曲线2.How绘制ROC曲线AUC3.Why为何AUC作为评价指标补充1.What混淆矩阵真实\预测预测正例预测反例正例TP(真正例)FN(假反例)反例FP(假正例)TN(真反例)TPR = TP/(TP+FN) 真正例率FPR = FP/(TN+FP) 假正例率ROC曲线前者为纵轴后者为横轴画一曲线—即ROC曲线ROC曲线所围成的面积即AUC(Area Under ROC Curve)2.How绘

2020-07-09 15:32:58 484

原创 win10下使用Git上传下载

win10下新手使用Git1.GitHub账号注册2.Git 安装3.GitHub新建项目4.配置GitGit新建仓库及cloneGit上传文件补充1.GitHub账号注册https://github.com/2.Git 安装在使用Git前我们需要先安装 Git。Git 目前支持 Linux/Unix、Solaris、Mac和 Windows 平台上运行。Git 各平台安装包下载地址为...

2019-03-22 15:50:28 1711

原创 从算法过程来粗略了解PCA及python实现

从算法过程来粗略了解PCA及python实现算法过程:(参考机器学习231页)每一步过程分析:1.这里采用数据中心化数据中心化:是指变量减去它的均值。#数据标准化:是指数值减去均值,再除以标准差。目的:通过中心化和标准化处理,得到均值为0,标准差为1的服从标准正态分布的数据。标准化可以使得不同的特征具有相同的尺度(Scale)2.计算协方差矩阵(由百度百科)3.对协方差矩阵...

2018-12-16 02:39:45 285

原创 SVD奇异值分解及PYTHON实现

SVD奇异值分解及PYTHON实现什么是SVD参考Mining of Massive Datasets Second Edition(译)一个简单的SVD计算过程1.准备进行奇异值分解的矩阵A:2.计算:3.求出A^TA的特征值和特征向量:4.求出AA^T的特征值和特征向量:5.计算出奇异值:当然,我们也可以用 σi=√λi 直接求出奇异值为 √3 和 1。(这里我...

2018-12-16 02:39:38 5241

原创 Dijkstra->MDS算法->ISOMAP降维

Dijkstra->MDS算法->ISOMAP降维ISOMAP降维(参考机器学习235页)目标是获得一个低维的矩阵,实现类似图a到图b的过程。问题就是我们不能简单的基于任意俩个点做它的欧式距离。所以我们取每个点的K个近邻形成一个连通的图。在此图的基础上计算它的任意两点的距离,形成一个距离矩阵。将这个矩阵作为MDS算法的输入,得到降维的结果。具体算法过程:Dijks...

2018-12-16 02:39:28 852

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除