前言
大模型无疑是当今最具影响力的AI技术之一,它正在革新包括自然语言处理、机器翻译、内容创作和客户服务等多个行业,并逐渐成为未来商业环境的重要组成部分。
截至目前,大模型的数量已超过200个。在这个大模型盛行的时代,大模型技术的竞争愈发激烈,大模型相关的岗位和面试也开始变得越来越卷。
本文总结了大模型算法岗位面试题(含答案),内容如下:
一、基础篇
1、目前主流的开源模型体系有哪些?
- Transformer体系:由Google提出的Transformer模型及其变体,如BERT、GPT等。
- PyTorch Lightning:一个基于PyTorch的轻量级深度学习框架,用于快速原型设计和实验。
- TensorFlow Model Garden:TensorFlow官方提供的一系列预训练模型和模型架构。
- Hugging Face Transformers:一个流行的开源库,提供了大量预训练模型和工具,用于NLP任务。
2、prefix LM和causal LM的区别是什么?
- prefix LM(前缀语言模型):在输入序列的开头添加一个可学习的任务相关的前缀,然后使用这个前缀和输入序列一起生成输出。这种方法可以引导模型生成适应特定任务的输出。
- causal LM(因果语言模型):也称为自回归语言模型,它根据之前生成的token预测下一个token。在生成文本时,模型只能根据已经生成的部分生成后续部分,不能访问未来的信息。
3、涌现能力是什么?
- 涌现能力(Emergent Ability):是指模型在训练过程中突然表现出的新的、之前未曾预料到的能力。这种现象通常发生在大型模型中,原因是大型模型具有更高的表示能力和更多的参数,可以更好地捕捉数据中的模式和关联。
二、进阶篇
1、LLaMA输入句子长度理论上可以无限长吗?
- LLaMA(Large Language Model Adaptation)模型的输入句子长度受到硬件资源和模型设计的限制。理论上,如果硬件资源足够,模型可以处理非常长的输入句子。然而,实际上,由于内存和处理能力的限制,输入句子长度通常是有限制的。
2、什么是LLMs复读机问题?
- LLMs复读机问题是指在某些情况下,大型语言模型在生成文本时会重复之前已经生成的内容,导致生成的文本缺乏多样性和创造性。
3、为什么会出现LLMs复读机问题?
- LLMs复读机问题可能由多种因素引起,包括模型训练数据中的重复模式、模型在处理长序列时的注意力机制失效、或者模型在生成文本时对过去信息的过度依赖等。
4、如何缓解LLMs复读机问题?
- 数据增强:通过增加训练数据的多样性和复杂性,减少重复模式的出现。
- 模型改进:改进模型的结构和注意力机制,使其更好地处理长序列和避免过度依赖过去信息。
- 生成策略:在生成文本时采用多样化的策略,如抽样生成或引入随机性,以增加生成文本的多样性。
5、什么情况用BE