【一】windows下springCloud整合zipkin实现链路追踪
springCloud Sleuth对于分布式链路的跟踪仅仅是生成一些数据,这些数据不便于人类阅读,所以我们一般把这种跟踪数据上传给Zipkin Server,由Zipkin通过UI页面统一进行数据的展示。
文章目录
前言
为什么要引入链路追踪?
1.随着分布式微服务的发展,服务在小型化的同时,服务数据急剧膨胀,导致调用链条特别复杂特别长,定位问题和数据提取比较困难;
2.微服务化也促使用平价的服务器(一般是VM,或者叫ECS)来替代价格高昂的专用服务器,所以会导致服务的稳定性变差,所以也需要关注资源的性能瓶颈;
3.链路追踪并非必须的,在传统项目、服务数量稀少、业务相对简单的项目就没有必要使用,在云原生微服务架构中则很有必要引入;
链路追踪能做什么?
链路追踪是为了解决技术痛点的,其核心价值在于:评估并记录服务间的调用链数据;我们可以基于这些数据清晰地知道客户请求的来龙去脉,系统出现问题的大致位置。链路追踪不关心服务内部触发的其它调用链,比如:服务内的定时器、服务内的初始化服务等;
一、zipkin jar包下载地址:
https://repo1.maven.org/maven2/io/zipkin/zipkin-server/
下载第一个可执行的jar包。
二、zipkin数据持久化
1.数据持久化到mysql
mysql数据库脚本获取地址:
https://github.com/openzipkin/zipkin/blob/master/zipkin-storage/mysql-v1/src/main/resources/mysql.sql
zipkin数据存储mysql建表语句:
CREATE TABLE IF NOT EXISTS zipkin_spans (
`trace_id_high` BIGINT NOT NULL DEFAULT 0 COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit',
`trace_id` BIGINT NOT NULL,
`id` BIGINT NOT NULL,
`name` VARCHAR(255) NOT NULL,
`remote_service_name` VARCHAR(255),
`parent_id` BIGINT,
`debug` BIT(1),
`start_ts` BIGINT COMMENT 'Span.timestamp(): epoch micros used for endTs query and to implement TTL',
`duration` BIGINT COMMENT 'Span.duration(): micros used for minDuration and maxDuration query',
PRIMARY KEY (`trace_id_high`, `trace_id`, `id`)
) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE utf8_general_ci;
ALTER TABLE zipkin_spans ADD INDEX(`trace_id_high`, `trace_id`) COMMENT 'for getTracesByIds';
ALTER TABLE zipkin_spans ADD INDEX(`name`) COMMENT 'for getTraces and getSpanNames';
ALTER TABLE zipkin_spans ADD INDEX(`remote_service_name`) COMMENT 'for getTraces and getRemoteServiceNames';
ALTER TABLE zipkin_spans ADD INDEX(`start_ts`) COMMENT 'for getTraces ordering and range';
CREATE TABLE IF NOT EXISTS zipkin_annotations (
`trace_id_high` BIGINT NOT NULL DEFAULT 0 COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit',
`trace_id` BIGINT NOT NULL COMMENT 'coincides with zipkin_spans.trace_id',
`span_id` BIGINT NOT NULL COMMENT 'coincides with zipkin_spans.id',
`a_key` VARCHAR(255) NOT NULL COMMENT 'BinaryAnnotation.key or Annotation.value if type == -1',
`a_value` BLOB COMMENT 'BinaryAnnotation.value(), which must be smaller than 64KB',
`a_type` INT NOT NULL COMMENT 'BinaryAnnotation.type() or -1 if Annotation',
`a_timestamp` BIGINT COMMENT 'Used to implement TTL; Annotation.timestamp or zipkin_spans.timestamp',
`endpoint_ipv4` INT COMMENT 'Null when Binary/Annotation.endpoint is null',
`endpoint_ipv6` BINARY(16) COMMENT 'Null when Binary/Annotation.endpoint is null, or no IPv6 address',
`endpoint_port` SMALLINT COMMENT 'Null when Binary/Annotation.endpoint is null',
`endpoint_service_name` VARCHAR(255) COMMENT 'Null when Binary/Annotation.endpoint is null'
) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE utf8_general_ci;
ALTER TABLE zipkin_annotations ADD UNIQUE KEY(`trace_id_high`, `trace_id`, `span_id`, `a_key`, `a_timestamp`) COMMENT 'Ignore insert on duplicate';
ALTER TABLE zipkin_annotations ADD INDEX(`trace_id_high`, `trace_id`, `span_id`) COMMENT 'for joining with zipkin_spans';
ALTER TABLE zipkin_annotations ADD INDEX(`trace_id_high`, `trace_id`) COMMENT 'for getTraces/ByIds';
ALTER TABLE zipkin_annotations ADD INDEX(`endpoint_service_name`) COMMENT 'for getTraces and getServiceNames';
ALTER TABLE zipkin_annotations ADD INDEX(`a_type`) COMMENT 'for getTraces and autocomplete values';
ALTER TABLE zipkin_annotations ADD INDEX(`a_key`) COMMENT 'for getTraces and autocomplete values';
ALTER TABLE zipkin_annotations ADD INDEX(`trace_id`, `span_id`, `a_key`) COMMENT 'for dependencies job';
CREATE TABLE IF NOT EXISTS zipkin_dependencies (
`day` DATE NOT NULL,
`parent` VARCHAR(255) NOT NULL,
`child` VARCHAR(255) NOT NULL,
`call_count` BIGINT,
`error_count` BIGINT,
PRIMARY KEY (`day`, `parent`, `child`)
) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE utf8_general_ci;
2.数据持久化到elasticSearch
启动脚本示例:
java -jar zipkin-server-2.23.16-exec.jar --STORAGE_TYPE=elasticsearch --ES_HOSTS=localhost:9200 --ES_HTTP_LOGGING=BASIC --ES_USERNAME=root --ES_PASSWORD=123456
zipkin默认创建的es索引为:
zipkin-span-日期
参数说明:
三、pom.xml导入zipkin依赖
<!--链路追踪 zipkin依赖,其中包含Sleuth的依赖-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>
四、yaml配置文件中配置zipkin服务
spring:
#日志链路追踪
sleuth:
sampler:
# 日志数据采样百分比,默认0.1(10%),这里为了测试设置成了100%,生产环境只需要0.1即可
probability: 1.0
zipkin:
#zipkin server的请求地址
base-url: http://127.0.0.1:9411
#让nacos把它当成一个URL,而不要当做服务名
discovery-client-enabled: false
sender:
type: web #设置使用http的方式传输数据
五、zipkin服务启动
1.数据持久化到mysql启动命令
java -jar zipkin-server-2.23.16-exec.jar --storage_type=mysql --MYSQL_DB=zipkin --MYSQL_USER=root --MYSQL_PASS=123456 --MYSQL_HOST=127.0.0.1 --MYSQL_TCP_PORT=3306;
2.数据持久化到elasticSearch启动命令
java -jar zipkin-server-2.23.16-exec.jar --STORAGE_TYPE=elasticsearch --ES_HOSTS=localhost:9200 --ES_HTTP_LOGGING=BASIC --ES_USERNAME=root --ES_PASSWORD=123456
启动后查看elasticSearch的管理工具kibana,会发现zipkin自动创建了zipkin开头的索引:
查看zipkin索引数据:
六、访问zipkin的UI界面
http://127.0.0.1:9411/
七、管理端服务调用链路查询
查询一条记录:
tagQuery=http.path=/cata/exchange/node/create
tagQuery=error and http.method=POST
八、logback-spring.xml日志输出格式加上traceId
<!-- 彩色日志格式 -->
<property name="CONSOLE_LOG_PATTERN"
value="[${APP_NAME}:${ServerIP}:${ServerPort}] [%clr(%X{traceId}){yellow}] %clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint} %clr(%level){blue} %clr(${PID}){magenta} %clr([%thread]){orange} %clr(%logger){cyan} %m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}" />
<property name="CONSOLE_LOG_PATTERN_NO_COLOR" value="[${APP_NAME}:${ServerIP}:${ServerPort}] [%X{traceId}] %d{yyyy-MM-dd HH:mm:ss.SSS} %level ${PID} [%thread] %logger %m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}" />
日志打印效果:
日志中的traceId和zipkin页面的traceId保持一致。
总结
通过引入zipkin可以更直观的查看微服务之间的调用关系,在服务出现异常时可以快速定位问题,同时通过在打印日志中引入traceId,可以通过traceId一次性查看一次完整微服务调用的全部日志,更有助于我们研发及运维人员快速定位服务故障点。