【微服务链路追踪】windows下springCloud整合zipkin实现链路追踪

【一】windows下springCloud整合zipkin实现链路追踪

springCloud Sleuth对于分布式链路的跟踪仅仅是生成一些数据,这些数据不便于人类阅读,所以我们一般把这种跟踪数据上传给Zipkin Server,由Zipkin通过UI页面统一进行数据的展示。



前言

为什么要引入链路追踪?
1.随着分布式微服务的发展,服务在小型化的同时,服务数据急剧膨胀,导致调用链条特别复杂特别长,定位问题和数据提取比较困难;
2.微服务化也促使用平价的服务器(一般是VM,或者叫ECS)来替代价格高昂的专用服务器,所以会导致服务的稳定性变差,所以也需要关注资源的性能瓶颈;
3.链路追踪并非必须的,在传统项目、服务数量稀少、业务相对简单的项目就没有必要使用,在云原生微服务架构中则很有必要引入;

链路追踪能做什么?
链路追踪是为了解决技术痛点的,其核心价值在于:评估并记录服务间的调用链数据;我们可以基于这些数据清晰地知道客户请求的来龙去脉,系统出现问题的大致位置。链路追踪不关心服务内部触发的其它调用链,比如:服务内的定时器、服务内的初始化服务等;

一、zipkin jar包下载地址:

https://repo1.maven.org/maven2/io/zipkin/zipkin-server/
下载第一个可执行的jar包。

二、zipkin数据持久化

1.数据持久化到mysql
mysql数据库脚本获取地址:
https://github.com/openzipkin/zipkin/blob/master/zipkin-storage/mysql-v1/src/main/resources/mysql.sql

zipkin数据存储mysql建表语句:

CREATE TABLE IF NOT EXISTS zipkin_spans (
  `trace_id_high` BIGINT NOT NULL DEFAULT 0 COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit',
  `trace_id` BIGINT NOT NULL,
  `id` BIGINT NOT NULL,
  `name` VARCHAR(255) NOT NULL,
  `remote_service_name` VARCHAR(255),
  `parent_id` BIGINT,
  `debug` BIT(1),
  `start_ts` BIGINT COMMENT 'Span.timestamp(): epoch micros used for endTs query and to implement TTL',
  `duration` BIGINT COMMENT 'Span.duration(): micros used for minDuration and maxDuration query',
  PRIMARY KEY (`trace_id_high`, `trace_id`, `id`)
) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE utf8_general_ci;

ALTER TABLE zipkin_spans ADD INDEX(`trace_id_high`, `trace_id`) COMMENT 'for getTracesByIds';
ALTER TABLE zipkin_spans ADD INDEX(`name`) COMMENT 'for getTraces and getSpanNames';
ALTER TABLE zipkin_spans ADD INDEX(`remote_service_name`) COMMENT 'for getTraces and getRemoteServiceNames';
ALTER TABLE zipkin_spans ADD INDEX(`start_ts`) COMMENT 'for getTraces ordering and range';

CREATE TABLE IF NOT EXISTS zipkin_annotations (
  `trace_id_high` BIGINT NOT NULL DEFAULT 0 COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit',
  `trace_id` BIGINT NOT NULL COMMENT 'coincides with zipkin_spans.trace_id',
  `span_id` BIGINT NOT NULL COMMENT 'coincides with zipkin_spans.id',
  `a_key` VARCHAR(255) NOT NULL COMMENT 'BinaryAnnotation.key or Annotation.value if type == -1',
  `a_value` BLOB COMMENT 'BinaryAnnotation.value(), which must be smaller than 64KB',
  `a_type` INT NOT NULL COMMENT 'BinaryAnnotation.type() or -1 if Annotation',
  `a_timestamp` BIGINT COMMENT 'Used to implement TTL; Annotation.timestamp or zipkin_spans.timestamp',
  `endpoint_ipv4` INT COMMENT 'Null when Binary/Annotation.endpoint is null',
  `endpoint_ipv6` BINARY(16) COMMENT 'Null when Binary/Annotation.endpoint is null, or no IPv6 address',
  `endpoint_port` SMALLINT COMMENT 'Null when Binary/Annotation.endpoint is null',
  `endpoint_service_name` VARCHAR(255) COMMENT 'Null when Binary/Annotation.endpoint is null'
) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE utf8_general_ci;

ALTER TABLE zipkin_annotations ADD UNIQUE KEY(`trace_id_high`, `trace_id`, `span_id`, `a_key`, `a_timestamp`) COMMENT 'Ignore insert on duplicate';
ALTER TABLE zipkin_annotations ADD INDEX(`trace_id_high`, `trace_id`, `span_id`) COMMENT 'for joining with zipkin_spans';
ALTER TABLE zipkin_annotations ADD INDEX(`trace_id_high`, `trace_id`) COMMENT 'for getTraces/ByIds';
ALTER TABLE zipkin_annotations ADD INDEX(`endpoint_service_name`) COMMENT 'for getTraces and getServiceNames';
ALTER TABLE zipkin_annotations ADD INDEX(`a_type`) COMMENT 'for getTraces and autocomplete values';
ALTER TABLE zipkin_annotations ADD INDEX(`a_key`) COMMENT 'for getTraces and autocomplete values';
ALTER TABLE zipkin_annotations ADD INDEX(`trace_id`, `span_id`, `a_key`) COMMENT 'for dependencies job';

CREATE TABLE IF NOT EXISTS zipkin_dependencies (
  `day` DATE NOT NULL,
  `parent` VARCHAR(255) NOT NULL,
  `child` VARCHAR(255) NOT NULL,
  `call_count` BIGINT,
  `error_count` BIGINT,
  PRIMARY KEY (`day`, `parent`, `child`)
) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE utf8_general_ci;

2.数据持久化到elasticSearch
启动脚本示例:
java -jar zipkin-server-2.23.16-exec.jar --STORAGE_TYPE=elasticsearch --ES_HOSTS=localhost:9200 --ES_HTTP_LOGGING=BASIC --ES_USERNAME=root --ES_PASSWORD=123456
zipkin默认创建的es索引为:
zipkin-span-日期

参数说明:
在这里插入图片描述

三、pom.xml导入zipkin依赖

<!--链路追踪 zipkin依赖,其中包含Sleuth的依赖-->
<dependency>
      <groupId>org.springframework.cloud</groupId>
      <artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>

四、yaml配置文件中配置zipkin服务

spring:
#日志链路追踪
  sleuth:
    sampler:
      # 日志数据采样百分比,默认0.1(10%),这里为了测试设置成了100%,生产环境只需要0.1即可
      probability: 1.0
  zipkin:
    #zipkin server的请求地址
    base-url: http://127.0.0.1:9411
    #让nacos把它当成一个URL,而不要当做服务名
    discovery-client-enabled: false
    sender:
      type: web #设置使用http的方式传输数据

五、zipkin服务启动

1.数据持久化到mysql启动命令

java -jar zipkin-server-2.23.16-exec.jar --storage_type=mysql  --MYSQL_DB=zipkin --MYSQL_USER=root --MYSQL_PASS=123456 --MYSQL_HOST=127.0.0.1 --MYSQL_TCP_PORT=3306;

2.数据持久化到elasticSearch启动命令

java  -jar zipkin-server-2.23.16-exec.jar --STORAGE_TYPE=elasticsearch --ES_HOSTS=localhost:9200 --ES_HTTP_LOGGING=BASIC --ES_USERNAME=root --ES_PASSWORD=123456

启动后查看elasticSearch的管理工具kibana,会发现zipkin自动创建了zipkin开头的索引:
在这里插入图片描述
查看zipkin索引数据:
在这里插入图片描述

六、访问zipkin的UI界面

http://127.0.0.1:9411/
在这里插入图片描述

七、管理端服务调用链路查询

查询一条记录:
tagQuery=http.path=/cata/exchange/node/create
tagQuery=error and http.method=POST

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

八、logback-spring.xml日志输出格式加上traceId

 <!-- 彩色日志格式 -->
    <property name="CONSOLE_LOG_PATTERN"
              value="[${APP_NAME}:${ServerIP}:${ServerPort}] [%clr(%X{traceId}){yellow}] %clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint} %clr(%level){blue} %clr(${PID}){magenta} %clr([%thread]){orange} %clr(%logger){cyan} %m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}" />
    <property name="CONSOLE_LOG_PATTERN_NO_COLOR" value="[${APP_NAME}:${ServerIP}:${ServerPort}] [%X{traceId}] %d{yyyy-MM-dd HH:mm:ss.SSS} %level ${PID} [%thread] %logger %m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}" />

日志打印效果:
在这里插入图片描述
日志中的traceId和zipkin页面的traceId保持一致。

总结

通过引入zipkin可以更直观的查看微服务之间的调用关系,在服务出现异常时可以快速定位问题,同时通过在打印日志中引入traceId,可以通过traceId一次性查看一次完整微服务调用的全部日志,更有助于我们研发及运维人员快速定位服务故障点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值