给你一个数组 nums 和一个整数 target 。
请你返回 非空不重叠 子数组的最大数目,且每个子数组中数字和都为 target 。
输入:nums = [1,1,1,1,1], target = 2
输出:2
解释:总共有 2 个不重叠子数组(加粗数字表示) [1,1,1,1,1] ,它们的和为目标值 2 。
示例 2:
输入:nums = [-1,3,5,1,4,2,-9], target = 6
输出:2
解释:总共有 3 个子数组和为 6 。
([5,1], [4,2], [3,5,1,4,2,-9]) 但只有前 2 个是不重叠的。
示例 3:
输入:nums = [-2,6,6,3,5,4,1,2,8], target = 10
输出:3
来源:力扣(LeetCode)
链接:[https://leetcode.cn/problems/maximum-number-of-non-overlapping-subarrays-with-sum-equals-target]
//解题关键:Set里面保存了sum的值,例如0,a,a+b,a+b+c……,如果sum-target在set里面存在,则保证有一个数组相加为target,
//或者用表达式理解,sum此时为a+b+c+d,减去target之后在set里面存在,比如为a,或者a+b,或者b等等,那么sum-target=(a+b+c+d)-target=(b+c),所以target=a+d,及刚才for走过的循环里面有一个满足条件。
public int maxNonOverlapping(int[] nums, int target) {
int size = nums.length;
int ret = 0;
int sum = 0;
Set<Integer> set = new HashSet<>();
set.add(0);
for(int i = 0;i < size;i++) {
sum+=nums[i];
if(set.contains(sum-target)){
ret++;
sum=0;
set = new HashSet<>();
set.add(0);
}else{
set.add(sum);
}
}
return ret;
}