102.二叉树的层序遍历
题目
给你二叉树的根节点 root
,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。
示例:
输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]
提示:
-
树中节点数目在范围
[0, 2000]
内 -
-1000 <= Node.val <= 1000
思路
💡广度优先遍历
层序遍历一个二叉树,就是从左到右一层一层地去遍历二叉树。需要借助队列实现,
队列先进先出,符合一层一层遍历地逻辑
栈先进后出,适合模拟深度优先遍历即递归的逻辑
放进一层的元素进到队列,同时要记录队列里的元素数量,弹出之前把左右孩子也放进来
代码实现
-
queue que;
-
if(root != NULL) que.push
-
终止条件:while(!que.empty())
- 记录节点数量 size = que.size(),防止后面不断变化
- vector vec
- while(size–)
- noed = que.first();que.pop()
- vec.push_back(node->value)
- if(node -> left)
- que.push(node->left)
- if(node->right)
- que.push(node->right)
-
return result.push_back(vec)
💡也是二叉树层序遍历的模板
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
queue<TreeNode*> que;
if(root != NULL)que.push(root);
vector<vector<int>> result;
while(!que.empty()){
int size = que.size();
vector<int> vec;
for(int i = 0; i < size; i++){
TreeNode* node = que.front();
que.pop();
vec.push_back(node->val);
if(node->left) que.push(node->left);
if(node->right)que.push(node->right);
}
result.push_back(vec);
}
return result;
}
};
107.二叉树的层序遍历 Ⅱ
题目
给你二叉树的根节点 root
,返回其节点值 自底向上的层序遍历 。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)
示例:
输入:root = [3,9,20,null,null,15,7]
输出:[[15,7],[9,20],[3]]
提示:
-
树中节点数目在范围
[0, 2000]
内 -
-1000 <= Node.val <= 1000
思路
最后 reverse 一下 result 就好了
代码实现
class Solution {
public:
vector<vector<int>> levelOrderBottom(TreeNode* root) {
queue<TreeNode*> que;
if(root!=NULL)que.push(root);
vector<vector<int>> result;
while(!que.empty()){
int size = que.size();
vector<int> vec;
for(int i = 0 ; i < size; ++i){
TreeNode* node = que.front();
que.pop();
vec.push_back(node->val);
if(node->left)que.push(node->left);
if(node->right)que.push(node->right);
}
result.push_back(vec);
}
reverse(result.begin(), result.end());
return result;
}
};
199.二叉树的右视图
题目
给定一个二叉树的 根节点 root
,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。
示例
输入: [1,2,3,null,5,null,4]
输出: [1,3,4]
提示
-
二叉树的节点个数的范围是
[0,100]
-
-100 <= Node.val <= 100
思路
层序遍历时,判断是否遍历到单层的最后面的元素,如果是,就放进 result 数组,随后返回 result
代码实现
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
queue<TreeNode*> que;
if(root != NULL)que.push(root);
vector<int> result;
while(!que.empty()){
int size = que.size();
for(int i = 0; i < size; ++i){
TreeNode* node = que.front();
que.pop();
if(i == (size-1))result.push_back(node->val);
if(node->left)que.push(node->left);
if(node->right)que.push(node->right);
}
}
return result;
}
};
637.二叉树的层平均值
题目
给定一个非空二叉树的根节点 root
, 以数组的形式返回每一层节点的平均值。与实际答案相差 10(-5)
以内的答案可以被接受。
示例:
输入:root = [3,9,20,null,null,15,7]
输出:[3.00000,14.50000,11.00000]
解释:第 0 层的平均值为 3,第 1 层的平均值为 14.5,第 2 层的平均值为 11 。
因此返回 [3, 14.5, 11] 。
提示:
-
树中节点数量在
[1, 10(4)]
范围内 -
-2(31) <= Node.val <= 2(31) - 1
思路
层序遍历的时候,把一层求个总和再取一个均值
代码实现
class Solution {
public:
vector<double> averageOfLevels(TreeNode* root) {
queue<TreeNode*> que;
if(root != NULL)que.push(root);
vector<double> result;
while(!que.empty()){
int size = que.size();
double sum = 0;
for(int i = 0; i < size; ++i){
TreeNode* node = que.front();
que.pop();
sum += node->val;
if(node->left)que.push(node->left);
if(node->right)que.push(node->right);
}
result.push_back(sum/size);
}
return result;
}
};
429.N叉树的层序遍历
题目
给定一个 N 叉树,返回其节点值的层序遍历。(即从左到右,逐层遍历)。
树的序列化输入是用层序遍历,每组子节点都由 null 值分隔(参见示例)。
示例:
输入:root = [1,null,3,2,4,null,5,6]
输出:[[1],[3,2,4],[5,6]]
提示:
-
树的高度不会超过
1000
-
树的节点总数在
[0, 10^4]
之间
思路
继续套模板,只不过一个结点有多个孩子
代码实现
class Solution {
public:
vector<vector<int>> levelOrder(Node* root) {
queue<Node*> que;
if(root != NULL)que.push(root);
vector<vector<int>> result;
while(!que.empty()){
int size = que.size();
vector<int> vec;
for(int i = 0; i < size; ++i){
Node* node = que.front();
que.pop();
vec.push_back(node->val);
for(int i = 0; i < node->children.size(); ++i){
if(node->children[i])que.push(node->children[i]);
}
}
result.push_back(vec);
}
return result;
}
};
515.在每个树行中找最大值
题目
给定一棵二叉树的根节点 root
,请找出该二叉树中每一层的最大值。
示例:
输入: root = [1,3,2,5,3,null,9]
输出: [1,3,9]
提示:
-
二叉树的节点个数的范围是
[0,10(4)]
-
-2(31) <= Node.val <= 2(31) - 1
思路
层序遍历,取每一层最大值
代码实现
class Solution {
public:
vector<int> largestValues(TreeNode* root) {
queue<TreeNode*> que;
if(root != NULL) que.push(root);
vector<int> result;
while(!que.empty()){
int size = que.size();
int max = INT_MIN;
for(int i = 0; i < size; ++i){
TreeNode* node = que.front();
que.pop();
max = node->val > max ? node->val : max;
if(node->left) que.push(node->left);
if(node->right) que.push(node->right);
}
result.push_back(max);
}
return result;
}
};
注意
int max = INT_MIN
,因为要考虑输入为负数的情况
116.填充每个节点的下一个右侧节点指针
题目
给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL
。
初始状态下,所有 next 指针都被设置为 NULL
。
示例:
输入:root = [1,2,3,4,5,6,7]
输出:[1,#,2,3,#,4,5,6,7,#]
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化的输出按层序遍历排列,同一层节点由 next 指针连接,'#' 标志着每一层的结束。
提示:
-
树中节点的数量在
[0, 2(12) - 1]
范围内 -
-1000 <= node.val <= 1000
思路
层序遍历时,记录一下本层的头部结点,然后在遍历的时候让前一个结点指向本结点
代码实现
class Solution {
public:
Node* connect(Node* root) {
queue<Node*> que;
if(root != NULL)que.push(root);
while(!que.empty()){
int size = que.size();
Node* nodePre;
Node* node;
for(int i = 0; i < size; ++i){
if(i == 0){
nodePre = que.front();
que.pop();
node = nodePre;
}else{
node = que.front();
que.pop();
nodePre->next = node;
nodePre = nodePre->next;
}
if(node->left) que.push(node->left);
if(node->right) que.push(node->right);
}
nodePre->next = NULL;
}
return root;
}
};
117.填充每个节点的下一个右侧节点指针II
题目
给定一个二叉树
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL
。
初始状态下,所有 next 指针都被设置为 NULL
。
进阶:
-
你只能使用常量级额外空间。
-
使用递归解题也符合要求,本题中递归程序占用的栈空间不算做额外的空间复杂度。
示例:
输入:root = [1,2,3,4,5,null,7]
输出:[1,#,2,3,#,4,5,7,#]
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化输出按层序遍历顺序(由 next 指针连接),'#' 表示每层的末尾。
提示:
-
树中的节点数小于
6000
-
-100 <= node.val <= 100
思路
这一题说的是二叉树,上一题说的是完整二叉树,其实没有区别
代码实现
class Solution {
public:
Node* connect(Node* root) {
queue<Node*> que;
if(root != NULL)que.push(root);
while(!que.empty()){
int size = que.size();
Node* nodePre;
Node* node;
for(int i = 0; i < size; ++i){
if(i == 0){
nodePre = que.front();
que.pop();
node = nodePre;
}else{
node = que.front();
que.pop();
nodePre->next = node;
nodePre = nodePre->next;
}
if(node->left)que.push(node->left);
if(node->right)que.push(node->right);
}
nodePre->next = NULL;
}
return root;
}
};
104.二叉树的最大深度
题目
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
示例:
给定二叉树 [3,9,20,null,null,15,7]
,
3
/ \
9 20
/ \
15 7
返回它的最大深度 3 。
思路
最大的深度就是二叉树的层数,和层序遍历方式吻合。
在二叉树中,一层一层地遍历二叉树,记录遍历的层数就是二叉树的深度。
代码实现
class Solution {
public:
int maxDepth(TreeNode* root) {
if(root == 0)return 0;
int depth = 0;
queue<TreeNode*> que;
que.push(root);
while(!que.empty()){
int size = que.size();
depth++;
for(int i = 0; i < size; ++i){
TreeNode* node = que.front();
que.pop();
if(node->left)que.push(node->left);
if(node->right)que.push(node->right);
}
}
return depth;
}
};
111.二叉树的最小深度
题目
给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
**说明:**叶子节点是指没有子节点的节点。
示例:
输入:root = [3,9,20,null,null,15,7]
输出:2
提示:
-
树中节点数的范围在
[0, 10(5)]
内 -
-1000 <= Node.val <= 1000
思路
注意:只有当左右孩子都为空时,才说明遍历到最低点了。如果其中一个孩子为空则不是最低点
代码实现
class Solution {
public:
int minDepth(TreeNode* root) {
if(root == NULL)return 0;
int depth = 0;
queue<TreeNode*> que;
que.push(root);
while(!que.empty()){
int size = que.size();
depth++;
for(int i = 0; i < size; ++i){
TreeNode* node = que.front();
que.pop();
if(node->left)que.push(node->left);
if(node->right)que.push(node->right);
if(node->left == NULL && node->right == NULL)return depth;
}
}
return depth;
}
};
226.翻转二叉树 (优先掌握递归)
题目
给你一棵二叉树的根节点 root
,翻转这棵二叉树,并返回其根节点。
示例:
输入:root = [4,2,7,1,3,6,9]
输出:[4,7,2,9,6,3,1]
提示:
-
树中节点数目范围在
[0, 100]
内 -
-100 <= Node.val <= 100
思路
遍历过程中去翻转每一个节点的左右孩子,达到整体翻转的效果。
这道题使用前序和后序都可以,中序不方便,因为中序遍历会把某些节点的左右孩子翻转两次
层序也可以,只要把每一个节点的左右孩子翻转一下的遍历方式都可以
代码实现
递归法
-
TreeNode* invertTree(root){
-
确定终止遍历:if(root == NULL) return root;
-
前序遍历:中左右,交换左右孩子:swap(root->left, root->right)//中
-
invertTree(root->left);//左
-
invertTree(root->right);//右
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if (root == NULL) return root;
swap(root->left, root->right); // 中
invertTree(root->left); // 左
invertTree(root->right); // 右
return root;
}
};
迭代法
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if(root == NULL)return root;
stack<TreeNode*> st;
st.push(root);
while(!st.empty()){
TreeNode* node = st.top();
st.pop();
swap(node->left, node->right);
if(node->left)st.push(node->left);
if(node->right)st.push(node->right);
}
return root;
}
};
101. 对称二叉树 (优先掌握递归)
题目
给你一个二叉树的根节点 root
, 检查它是否轴对称。
示例:
输入:root = [1,2,2,3,4,4,3]
输出:true
提示:
-
树中节点数目在范围
[1, 1000]
内 -
-100 <= Node.val <= 100
思路
比较根节点的左子树和右子树是不是相互翻转,所以其实要比较的是两个树(这两个树是根节点的左右子树),所以再递归遍历的过程中,也要同时遍历两棵树
比较的是两个子树的里侧和外侧的元素是否相等
遍历顺序只能是后序遍历,因为要通过递归函数的返回值来判断两个子树的内侧节点和外侧节点是否相等
所以一个树的遍历顺序是左右中,另一个是右左中
💡需要收集孩子信息,向上一层返回,都是用后序遍历
代码实现
递归法
- bool compare(ThreeNode* left, right){
- 终止条件:
- if(left == NULL && right != NULL) false
- else if(left != NULL && right == NULL) false
- else if(left == NULL && right == NULL)true
- else if(left->val != right->val)false
- bool outside = compare(left->left, right->right)
- bool inside = compare(left->right, right->left)
- bool result = outside && inside
- return result;
- 终止条件:
class Solution {
public:
bool compare(TreeNode* left, TreeNode* right){
if(left == NULL && right != NULL)return false;
else if(left != NULL && right == NULL)return false;
else if(left == NULL && right == NULL)return true;
else if(left->val != right->val)return false;
bool outside = compare(left->left, right->right);
bool inside = compare(left->right, right->left);
bool result = outside && inside;
return result;
}
bool isSymmetric(TreeNode* root) {
bool result = compare(root->left, root->right);
return result;
}
};
迭代法
使用队列来比较两个树(根节点的左右子树)是否相互反转(注意不是层序遍历)
使用队列
通过队列来判断根节点的左子树和右子树的内侧和外侧是否相等