小波分析

在介绍小波分析之前,我们需要了解一个问题:小波为什么出现?简单来说,小波分析的出现是为了解决傅里叶变换没有时间信息的不足(当信号不平稳时,通过傅里叶变换得到的频域信息可能是相同的)。本文首先简单回顾一下傅里叶变换,然后引入介绍小波。

时域、频域和傅里叶变换

傅里叶变换是在信号处理中最常用的变换。我们通常得到的信号是时域中的信号(x轴为时间,y轴为振幅)。在这里插入图片描述
虽然时域中绘制信号通常是可视化的好方法,但频域中的信号也非常有用。下面,底部图是类似于时域中的语音信号的信号。顶部曲线图上的线是频域中表示的相同信号。它是该时间段内信号频率的摘要。在这里插入图片描述
从时域到频域以及从频域返回到时域的过程称为傅里叶变换。在1820年代,约瑟夫·傅立叶有一个非凡的见解,即任何信号都可以用一个方程来表示,这个方程只是将sin()和cos()的组合加起来。例如,一个方波的公式(二进制信号,1,0,1,0,1,0)是:
f ( x ) = 4 h π ( sin ⁡ ( x ) + 1 3 sin ⁡ ( 3 x ) + 1 5 sin ⁡ ( 5 x ) + 1 7 sin ⁡ ( 7 x ) + … ) f(x)=\frac{4 h}{\pi}\left(\sin (x)+\frac{1}{3} \sin (3 x)+\frac{1}{5} \sin (5 x)+\frac{1}{7} \sin (7 x)+\ldots\right) f(x)=π4h(sin(x)+31sin(3x)+51sin(5x)+71sin(7x)+)
sin()波的加入一直持续到无穷大(忽略4h / pi位)。值得注意的是,每个sin()项都是不同的频率。例如,sin(x)和sin(3x)在时域中看起来像这样:
在这里插入图片描述
并且在频域中是尖峰:
在这里插入图片描述
上面的函数显示了如何通过将不同频率的负载加在一起来表示像方形或三角形这样非常笨拙的形状。下面是方波的第一个频率sin(x),方波前两个频率sin(x)+ 1/3 sin(3x)和前10个频率的图表:
在这里插入图片描述
可以看到随着添加的sin()频率越多,它开始看起来越来越像方波。

对信号进行傅里叶变换后,就可以降低噪声,压缩数据,调制,滤波,编码等。所有这些过程都需要在频域中操纵信号,因此在任何工作开始之前都要进行傅里叶变换。

但傅里叶变换有一个很大的局限:当时域上的信号不稳定时,通过傅里叶变换得到的频域信号是没办法体现出来的。例如下面的三个信号,第二个和第三个信号在时域上是不同的,但在频域上是完全相同的。
在这里插入图片描述
可见,傅里叶变换只能反映一段信号上总体包含哪些频率的成分,但对各成分出现的时刻一无所知。因此时域完全不同的两个信号,可能频谱图一样。

显然,对于上图那样的非平稳信号,我们只知道频域信息是不够的,还需要知道信号频率随时间变化的情况,即各个时刻的瞬时频率及振幅,这称为时频分析。

海森堡不确定性原理

在引入小波分析之前,首先介绍一个原理——海森堡不确定性原理。傅里叶变换的局限性与这一原理有关。

在物理学中,原理的叙述如下:你可以知道粒子在哪里或者它有多快,但不是两者都知道。这个过程是一种权衡。如果你想更加确定球的位置,你必须不太确定球的速度,反之亦然。

下图是不确定性原理的表示。球的位置在x轴上,球的速度在y轴上。红点显示图表上的实际速度和位置。方框表示对每个值的不确定性:在这里插入图片描述
这种不确定性也称为测量的分辨率 。

傅里叶变换具有相同的分辨率问题。您可以确定信号的频率或时间,但不能同时确定两者。下图与上图相同,但频率和时域取代了球的速度和位置,因为它可以方便地以相同的方式考虑它:
在这里插入图片描述
问题在于,当研究真实信号时,了解信号的“瞬时频率”是有用的。瞬时频率是精确时刻信号的准确频率。例如,如果我正在听音乐曲目,我希望能够说“在音乐轨道1分59.0423秒,声音是1563.2赫兹”。不幸的是,傅里叶变换无法做到这一点,因为在频域和时域之间存在最小量的不确定性,例如海森堡在粒子的速度和位置(盒子的面积)之间具有最小量的不确定性。你可以知道你想要找到频率的时刻(比如蓝盒子),但由于存在最小的不确定性,所以必须在频率范围内伸展,

使用傅立叶变换可以做的最好的事情是采样一段时间(例如,一首歌曲中1分58秒和1分59秒之间的时间信号)并找到一定数量的频率播放的频率范围时间,由黑匣子代表。通过再次查看帖子中的第三张图片可以看出这方面的一个例子。在一段时间内有一个信号(例如有人说’你好’),频率图是那段时间内记录的频率范围。

现在我们已经看到了傅立叶变换如何受到不确定性原理的影响,或者换句话说我们已经看到傅里叶变换在频域和时域之间缺乏分辨率。这就是小波进入的地方。将信号分解为小波而不是频率可以在转换为的域中提供更好的分辨率。当使用小波变换时,信号被变换到小波域而不是频域。

小波变换和小波域

在这篇文章中说的第一件事之一是小波是一个’迷你波’,而sin()和cos()是无限的(它们永远不会归零并保持在那里,它们会永远存在)。在傅立叶变换期间,信号因此被解构为无限长的波。因此它无法体现出时间上的信息。为了克服上面的分辨率问题,使用小波变换将信号解构为加在一起的小波载荷。小波是有用的,因为它们在时间和频率上受到限制。 它不是永久持续且没有时间限制的小波,而是快速消亡,就像下面不同小波的例子所示:在这里插入图片描述
下面详细介绍小波的相关组成成分。

扩张方程和尺度函数

扩张方程:一个函数由它自身的缩放、平移版本的线性组合来定义。例如, f ( x ) = ∑ k = 0 d − 1 c k f ( 2 x − k ) f(x)=\sum_{k=0}^{d-1} c_{k} f(2 x-k) f(x)=k=0d1ckf(2xk)
尺度函数(父小波)是小波系统基本的组成成分,也成为小波基。尺度函数是扩张方程的解。例如,Haar尺度函数 ϕ ( x ) \phi(x) ϕ(x)是扩张方程 f ( x ) = f ( 2 x ) + f ( 2 x − 1 ) f(x)=f(2 x)+f(2 x-1) f(x)=f(2x)+f(2x1)的解,即
ϕ ( x ) = { 1 , 0 ≤ x &lt; 1 0 , otherwise  \phi(x)=\left\{ \begin{aligned} {1,} &amp; {\quad 0 \leq x&lt;1} \\ {0,} &amp; {\quad \text {otherwise }} \end{aligned} \right. ϕ(x)={1,0,0x<1otherwise 
与尺度函数相对应的是小波函数(母小波)

未完待续…

  • 17
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值