题目54:螺旋矩阵
给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素。
示例 1:
输入:
[
[ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ]
]
输出: [1,2,3,6,9,8,7,4,5]
示例 2:
输入:
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9,10,11,12]
]
输出: [1,2,3,4,8,12,11,10,9,5,6,7]
思路一: 模拟过程
通过控制行的上下边界,列的左右边界
class Solution(object):
def spiralOrder(self, matrix):
"""
:type matrix: List[List[int]]
:rtype: List[int]
"""
if not matrix:
return []
res = []
u_i = 0
d_i = len(matrix)-1
l_j = 0
r_j = len(matrix[0])-1
while u_i <= d_i and l_j <= r_j:
# 从左到右
for i in range(l_j,r_j+1):
res.append(matrix[u_i][i])
u_i += 1
if u_i > d_i:
break
# 从上到下
for i in range(u_i,d_i+1):
res.append(matrix[i][r_j])
r_j -= 1
if l_j > r_j:
break
# 从右到左
for i in range(r_j,l_j-1,-1):
res.append(matrix[d_i][i])
d_i -= 1
# 从下到上
for i in range(d_i,u_i-1,-1):
res.append(matrix[i][l_j])
l_j += 1
return res
思路二: 旋转(类似吃蛋卷)
直接举例子,
把弹出输出即可.
class Solution(object):
def spiralOrder(self, matrix):
"""
:type matrix: List[List[int]]
:rtype: List[int]
"""
if not matrix:
return []
res = []
while matrix:
res.extend(matrix.pop(0))
next_matrix = []
if matrix == []:
break
# print(matrix)
for i in zip(*matrix):
next_matrix.append((i))
# print(next_matrix)
matrix = next_matrix[::-1]
return res
思路三:模拟
直觉
绘制螺旋轨迹路径,我们发现当路径超出界限或者进入之前访问过的单元格时,会顺时针旋转方向。
算法
假设数组有 R 行 C 列,seen[r][c] 表示第 r 行第 c 列的单元格之前已经被访问过了。当前所在位置为 (r, c),前进方向是 di。我们希望访问所有 C 个单元格。
当我们遍历整个矩阵,下一步候选移动位置是 (cr, cc)。如果这个候选位置在矩阵范围内并且没有被访问过,那么它将会变成下一步移动的位置;否则,我们将前进方向顺时针旋转之后再计算下一步的移动位置。
class Solution(object):
def spiralOrder(self, matrix):
if not matrix:
return []
R, C = len(matrix), len(matrix[0])
seen = [[False] * C for _ in matrix]
ans = []
dr = [0, 1, 0, -1]
dc = [1, 0, -1, 0]
r = c = di = 0
for _ in range(R * C):
ans.append(matrix[r][c])
seen[r][c] = True
cr, cc = r + dr[di], c + dc[di]
if 0 <= cr < R and 0 <= cc < C and not seen[cr][cc]:
r, c = cr, cc
else:
di = (di + 1) % 4
r, c = r + dr[di], c + dc[di]
return ans
复杂度分析
时间复杂度: O(N),其中 N 是输入矩阵所有元素的个数。因为我们将矩阵中的每个元素都添加进答案里。
空间复杂度: O(N),需要两个矩阵 seen 和 ans 存储所需信息。
思路四:按层模拟
直觉
答案是最外层所有元素按照顺时针顺序输出,其次是次外层,以此类推。
算法
我们定义矩阵的第 k 层是到最近边界距离为 k 的所有顶点。例如,下图矩阵最外层元素都是第 1 层,次外层元素都是第 2 层,然后是第 3 层的。
[[1, 1, 1, 1, 1, 1, 1],
[1, 2, 2, 2, 2, 2, 1],
[1, 2, 3, 3, 3, 2, 1],
[1, 2, 2, 2, 2, 2, 1],
[1, 1, 1, 1, 1, 1, 1]]
对于每层,我们从左上方开始以顺时针的顺序遍历所有元素,假设当前层左上角坐标是 (r1, c1),右下角坐标是 (r2, c2)。
首先,遍历上方的所有元素 (r1, c),按照 c = c1,…,c2 的顺序。然后遍历右侧的所有元素 (r, c2),按照 r = r1+1,…,r2 的顺序。如果这一层有四条边(也就是 r1 < r2 并且 c1 < c2 ),我们以下图所示的方式遍历下方的元素和左侧的元素。
class Solution(object):
def spiralOrder(self, matrix):
def spiral_coords(r1, c1, r2, c2):
for c in range(c1, c2 + 1):
yield r1, c
for r in range(r1 + 1, r2 + 1):
yield r, c2
if r1 < r2 and c1 < c2:
for c in range(c2 - 1, c1, -1):
yield r2, c
for r in range(r2, r1, -1):
yield r, c1
if not matrix: return []
ans = []
r1, r2 = 0, len(matrix) - 1
c1, c2 = 0, len(matrix[0]) - 1
while r1 <= r2 and c1 <= c2:
for r, c in spiral_coords(r1, c1, r2, c2):
ans.append(matrix[r][c])
r1 += 1; r2 -= 1
c1 += 1; c2 -= 1
return ans
复杂度分析
时间复杂度: O(N),其中 N 是输入矩阵所有元素的个数。因为我们将矩阵中的每个元素都添加进答案里。
空间复杂度: O(N),需要矩阵 ans 存储信息。
一行代码
class Solution:
def spiralOrder(self, matrix: List[List[int]]) -> List[int]:
return matrix and [*matrix.pop(0)] + self.spiralOrder([*zip(*matrix)][::-1])