小白试水——leetcode腾讯题库-4.寻找两个有序数组的中位数(Python解答)

题目:寻找两个有序数组的中位数

给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。

请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。

你可以假设 nums1 和 nums2 不会同时为空。

示例 1:

nums1 = [1, 3]
nums2 = [2]

则中位数是 2.0

示例 2:

nums1 = [1, 2]
nums2 = [3, 4]

则中位数是 (2 + 3)/2 = 2.5

【参考分析】
知识点查漏补缺

时间复杂度
参考博文:
①算法—时间复杂度
-----https://blog.csdn.net/user11223344abc/article/details/81485842
②饭后茶思:求两递增数组的中位数(O(log(m + n)))你会吗?
-----https://www.jianshu.com/p/c2b57fd3a3ca

代码实现

# 未满足算法的时间复杂度为 O(log(m + n))要求,直接使用数组合并排序取中位数求解
class Solution(object):
    def findMedianSortedArrays(self, nums1, nums2):
        """
        :type nums1: List[int]
        :type nums2: List[int]
        :rtype: float
        """
        for i in nums2:
            nums1.append(i)
        data = sorted(nums1)
        size = len(data)
        if size % 2 == 0:
            median = (data[size//2] + data[size//2-1]) / 2.0
            return median
        else:
            median = data[size//2]
            return median

# nums1 = [1,3]
# nums2 = [2,4]
# re = Solution()
# print(re.findMedianSortedArrays(nums1,nums2))

在这里插入图片描述

----时间复杂度解析思路及代码抄录自LeetCode官网,以便自学及参考----

【题目分析】(摘录官网分析,以便后续学习)

方法:递归法

为了解决这个问题,我们需要理解 “中位数的作用是什么”。在统计中,中位数被用来:

将一个集合划分为两个长度相等的子集,其中一个子集中的元素总是大于另一个子集中的元素。

如果理解了中位数的划分作用,我们就很接近答案了。

首先,让我们在任一位置 ii 将 \text{A}A 划分成两个部分:

          left_A             |        right_A
    A[0], A[1], ..., A[i-1]  |  A[i], A[i+1], ..., A[m-1]

由于 \text{A}A 中有 mm 个元素, 所以我们有 m+1m+1 种划分的方法(i = 0 \sim mi=0∼m)。

我们知道:

len(left_A)=i,len(right_A)=m−i.

注意:当 i = 0 时,left_A 为空集, 而当 i=m 时, right_A 为空集。

采用同样的方式,我们在任一位置 jj 将 \text{B}B 划分成两个部分:

      left_B             |        right_B
B[0], B[1], ..., B[j-1]  |  B[j], B[j+1], ..., B[n-1]

将 left_A 和 left_B 放入一个集合,并将 right_A 和 right_B 放入另一个集合。 再把这两个新的集合分别命名为 left_part 和 right_part:

      left_part          |        right_part
A[0], A[1], ..., A[i-1]  |  A[i], A[i+1], ..., A[m-1]
B[0], B[1], ..., B[j-1]  |  B[j], B[j+1], ..., B[n-1]

如果我们可以确认:

1.len(left_part)=len(right_part)

2.max(left_part)≤min(right_part)

那么,我们已经将 {A,B} 中的所有元素划分为相同长度的两个部分,且其中一部分中的元素总是大于另一部分中的元素。那么:

median= (max(left_part)+min(right_part))/2

要确保这两个条件,我们只需要保证:

1.i + j = m - i + n - j(或:m - i + n - j + 1) 如果 n≥m,只需要使 i=0∼m, j=(m+n+1)/2−i

2.B[j−1]≤A[i] 以及 A[i−1]≤B[j]

ps.1 为了简化分析,我假设A[i−1],B[j−1],A[i],B[j] 总是存在,哪怕出现 i=0,i=m,j=0,或是 j=n 这样的临界条件。 我将在最后讨论如何处理这些临界值。

ps.2 为什么 n≥m?由于0≤i≤m 且 j=(m+n+1)/2−i,我必须确保 j 不是负数。如果 n < m,那么 j 将可能是负数,而这会造成错误的答案。

所以,我们需要做的是:

在 [0,m] 中搜索并找到目标对象 i,以使:

B[j−1]≤A[i] 且 A[i−1]≤B[j], 其中  j=(m+n+1)/2−i

接着,我们可以按照以下步骤来进行二叉树搜索:

1.设 imin=0,imax=m, 然后开始在 [imin,imax] 中进行搜索。

2.令 i=(imin+imax)/2, j=(m+n+1)/2−i

3.现在我们有 len(left_part)=len(right_part)。 而且我们只会遇到三种情况:

○ B[j−1]≤A[i] 且 A[i−1]≤B[j]:

这意味着我们找到了目标对象 i,所以可以停止搜索。

○ B[j−1]>A[i]:

这意味着 A[i] 太小,我们必须调整 i 以使 B[j−1]≤A[i]。
我们可以增大 i 吗?
是的,因为当 i 被增大的时候,j 就会被减小。
因此 B[j−1] 会减小,而 A[i] 会增大,那么 B[j−1]≤A[i] 就可能被满足。
我们可以减小 i 吗?
不行,因为当 i 被减小的时候,j 就会被增大。
因此 B[j−1] 会增大,而 A[i] 会减小,那么 B[j−1]≤A[i] 就可能不满足。
所以我们必须增大 i。也就是说,我们必须将搜索范围调整为 [i+1,imax]。 因此,设 imin=i+1,并转到步骤 2。

○ A[i−1]>B[j]:

这意味着 A[i−1] 太大,我们必须减小 i 以使 [j]A[i−1]≤B[j]。 也就是说,我们必须将搜索范围调整为[imin,i−1]。
因此,设 \text{imax} = i-1imax=i−1,并转到步骤 2。

当找到目标对象 i 时,中位数为:

max(A[i−1],B[j−1]), 当 m + n 为奇数时

(max(A[i−1],B[j−1])+min(A[i],B[j]))/2, 当 m + n 为偶数时

现在,让我们来考虑这些临界值 i=0,i=m,j=0,j=n,此时 A[i−1],B[j−1],A[i],B[j] 可能不存在。 其实这种情况比你想象的要容易得多。

我们需要做的是确保 max(left_part)≤min(right_part)。 因此,如果 i 和 j 不是临界值(这意味着 A[i−1],B[j−1],A[i],B[j] 全部存在), 那么我们必须同时检查 B[j−1]≤A[i] 以及 A[i−1]≤B[j] 是否成立。 但是如果 A[i−1],B[j−1],A[i],B[j] 中部分不存在,那么我们只需要检查这两个条件中的一个(或不需要检查)。 举个例子,如果 i = 0,那么 A[i−1] 不存在,我们就不需要检查 A[i−1]≤B[j] 是否成立。 所以,我们需要做的是:

在[0,m] 中搜索并找到目标对象 i,以使:

B[j−1]≤A[i]) 或是 A[i−1]≤B[j]), 其中  j=(m+n+1)/2−i

在循环搜索中,我们只会遇到三种情况:

1.(j=0 or i = m or B[j−1]≤A[i]) 或是 (i=0 or j = n or A[i−1]≤B[j]),这意味着 i 是完美的,我们可以停止搜索。
2.j>0 and i < m and B[j−1]>A[i] 这意味着 i 太小,我们必须增大它。
3.i>0 and j<n and A[i−1]>B[j] 这意味着 i 太大,我们必须减小它。

感谢 @Quentin.chen 指出:i<m ⟹ j>0 以及 i>0⟹j<n 始终成立,这是因为:

m≤n, i<m ⟹ j=(m+n+1)/2−i > (m+n+1)/2−m ≥ (2m+1)/2−m ≥ 0
.
m≤n, i>0 ⟹ j=(m+n+1)/2−i < (m+n+1)/2 ≤ (2n+1)/2 ≤ n

所以,在情况 2 和 3 中,我们不需要检查 j > 0 或是 j < n 是否成立。

代码解析

# java 代码解析
class Solution {
    public double findMedianSortedArrays(int[] A, int[] B) {
        int m = A.length;
        int n = B.length;
        if (m > n) { // to ensure m<=n
            int[] temp = A; A = B; B = temp;
            int tmp = m; m = n; n = tmp;
        }
        int iMin = 0, iMax = m, halfLen = (m + n + 1) / 2;
        while (iMin <= iMax) {
            int i = (iMin + iMax) / 2;
            int j = halfLen - i;
            if (i < iMax && B[j-1] > A[i]){
                iMin = i + 1; // i is too small
            }
            else if (i > iMin && A[i-1] > B[j]) {
                iMax = i - 1; // i is too big
            }
            else { // i is perfect
                int maxLeft = 0;
                if (i == 0) { maxLeft = B[j-1]; }
                else if (j == 0) { maxLeft = A[i-1]; }
                else { maxLeft = Math.max(A[i-1], B[j-1]); }
                if ( (m + n) % 2 == 1 ) { return maxLeft; }

                int minRight = 0;
                if (i == m) { minRight = B[j]; }
                else if (j == n) { minRight = A[i]; }
                else { minRight = Math.min(B[j], A[i]); }

                return (maxLeft + minRight) / 2.0;
            }
        }
        return 0.0;
    }
}
# python 代码解析
def median(A, B):
    m, n = len(A), len(B)
    if m > n:
        A, B, m, n = B, A, n, m
    if n == 0:
        raise ValueError

    imin, imax, half_len = 0, m, (m + n + 1) / 2
    while imin <= imax:
        i = (imin + imax) / 2
        j = half_len - i
        if i < m and B[j-1] > A[i]:
            # i is too small, must increase it
            imin = i + 1
        elif i > 0 and A[i-1] > B[j]:
            # i is too big, must decrease it
            imax = i - 1
        else:
            # i is perfect

            if i == 0: max_of_left = B[j-1]
            elif j == 0: max_of_left = A[i-1]
            else: max_of_left = max(A[i-1], B[j-1])

            if (m + n) % 2 == 1:
                return max_of_left

            if i == m: min_of_right = B[j]
            elif j == n: min_of_right = A[i]
            else: min_of_right = min(A[i], B[j])

            return (max_of_left + min_of_right) / 2.0

复杂度分析

时间复杂度:O(log(min(m,n))

首先,查找的区间是 [0,m]。 而该区间的长度在每次循环之后都会减少为原来的一半。 所以,我们只需要执行 log(m) 次循环。由于我们在每次循环中进行常量次数的操作,所以时间复杂度为 O(log(m))。 由于 m≤n,所以时间复杂度是 O(log(min(m,n)))。

空间复杂度:O(1), 我们只需要恒定的内存来存储 9 个局部变量, 所以空间复杂度为 O(1)。

小白试水-------请各位大佬点评指正,谢谢!!!

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值