【文献阅读笔记】Deep Clustering with Convolutional Autoencoder

这篇文章介绍了DeepConvolutionalEmbeddedClustering(DCEC),一种改进的深度聚类方法,它利用卷积自编码器(CAE)学习图像特征并保持局部结构。DCEC融合了CAE的特征提取和聚类步骤,通过优化重构损失和聚类损失来控制数据的扭曲程度。作者针对现有深度聚类算法的局限提出了创新解决方案。
摘要由CSDN通过智能技术生成

标题(paper):Deep Clustering with Convolutional Autoencoders

期刊 + 时间 + 有无源代码: nternational Conference on Neural Information Processing - 2017 -

作者: Xifeng Guo, Xinwang Liu, En Zhu, and Jianping Yin

方法名及缩写: Deep Convolutional Embedded Clustering (DCEC)

算法框架:

流程图 : 在这里插入图片描述

卷积自编码示意图,Conv 卷积层,Flatten平铺操作, h h h 嵌入层,FC 全连接层, DeConv 卷积转置层。这种CAE结构不需要分层预训练。

在这里插入图片描述

DCEC流程图 clustering layers可以参考DEC

主要创新点: DCEC中同时利用了CAE和局部结构的优点。个人感觉像是将卷积自编码器和聚类步骤融合。

关键思想是CAE有利于图像特征的学习,并保持数据的局部结构,避免特征空间的失真。

动机: 1、现有的深度聚类算法要么不能很好地利用卷积神经网络,要么不能很好地保留学习到的特征空间中数据生成分布的局部结构。

2、讨论什么类型的神经网络适合于特征提取?特征空间中应该保留数据的哪些属性?的这两个问题。

目标函数:
L = L r + γ L c L=L_r+\gamma L_c L=Lr+γLc
L r L_r Lr是重构损失, L r L_r Lr是聚类损失, γ > 0 \gamma >0 γ>0是控制嵌入空间扭曲程度的系数(本文 γ = 0.1 \gamma=0.1 γ=0.1)

L c L_c Lc的定义和DEC基本一致。

优化步骤: 首先 γ = 0 \gamma=0 γ=0 预训练参数,预训练后,通过对所有图像的嵌入特征执行k-means来初始化聚类中心。

其次, γ = 0.1 \gamma=0.1 γ=0.1更新CAE的权值,聚类中心,目标分布 P P P(想了解可以查原文,本身文中写的就不多,我感觉基本和DEC优化公式和方法一致)

注解:(优缺点 + 随便想记的内容 )

1、这篇论文可以看作是DEC的改进。作者在文中提到DEC仅考虑了聚类损失,没有考虑编码损失,并且忽略了解码步骤,同时根据聚类结构动态调整编码结构等问题(可以查这篇论文,里面又讨论)。

2、对于卷积网络参数设置上:
c o n v 32 5 → c o n v 64 5 → c o n v 128 3 → F C 10 \mathrm{conv}_{32}^5\to\mathrm{conv}_{64}^5\to\mathrm{conv}_{128}^3\to\mathrm{FC}_{10} conv325conv645conv1283FC10
c o n v n k conv^k_n convnk 表示有 n n n个滤波器的卷积层,默认核大小为 k × k k\times k k×k,步长为2。

Convolutional AutoEncoders 卷积自编码器

组成:编码器encoder f W ( ) f_W() fW()和 解码器decoder g U ( ) g_U() gU()

目标:通过最小化所有样本的输入和输出之间的均方误差(MSE)来找到每个输入样本的代码
min ⁡ W , U 1 n ∑ i = 1 n ∥ g U ( f W ( x i ) ) − x i ∥ 2 2 \begin{aligned}\min_{W,U}\frac1n\sum_{i=1}^n\|g_U(f_W(x_i))-x_i\|_2^2\end{aligned} W,Uminn1i=1ngU(fW(xi))xi22
全连接自编码器(一般的自编码器)
f W ( x ) = σ ( W x ) ≡ h g U ( h ) = σ ( U h ) \begin{aligned}f_W(x)&=\sigma(Wx)\equiv h\\g_U(h)&=\quad\sigma(Uh)\end{aligned} fW(x)gU(h)=σ(Wx)h=σ(Uh)
x x x h h h是向量, σ ( ) \sigma() σ()是激活函数

卷积自编码器
f W ( x ) = σ ( x ∗ W ) ≡ h g U ( h ) = σ ( h ∗ U ) \begin{aligned}f_W(x)&=\sigma(x*W)\equiv h\\g_U(h)&=\quad\sigma(h*U)\end{aligned} fW(x)gU(h)=σ(xW)h=σ(hU)
x x x h h h是矩阵或者张量, ∗ * 是卷积操作。

注:1、也可以加入其他约束

在这里插入图片描述

Stacked Convolutional AutoEncoders (SCAE)

与SAE相似,都是堆叠多层CAE。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值