198. 打家劫舍
题目描述
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
解题思路:动态规划
class Solution {
public int rob(int[] nums) {
if(nums == null || nums.length == 0) {
return 0;
}
int n = nums.length;
int dp[] = new int[n + 2];
// dp[i] = x 表示:从第 i 间房子开始抢劫,最多能抢到的钱为 x
// base case
dp[0] = 0;
//相当于nums数组最后多了不能选择的钱为0的房屋
dp[n + 1] = 0;
/*
对于每一个dp[i],都有两种情况:
1. 选择nums[i]: dp[i] = dp[i + 2] + nums[i]
2. 不选择nums[i]: dp[i] = dp[i + 1]
dp[i]都与后面的结果有关,所以使用动态规划自底向上:dp数组从后往前计算
*/
for(int i = n - 1; i >= 0; i--) {
//第一次循环相当于比较nums最后一个位置是否被选择
dp[i] = Math.max(dp[i + 2] + nums[i], dp[i + 1]);
}
return dp[0];
}
}
空间复杂度优化为O(1)
class Solution {
//状态转移只和 dp[i] 最近的两个状态有关,所以可以进一步优化,将空间复杂度降低到 O(1)。
public int rob(int[] nums) {
if(nums == null || nums.length == 0) {
return 0;
}
int n = nums.length;
// 记录 dp[i+1] 和 dp[i+2]
int dp_i_1 = 0, dp_i_2 = 0;
// 记录 dp[i]
int dp_i = 0;
for (int i = n - 1; i >= 0; i--) {
dp_i = Math.max(dp_i_1, nums[i] + dp_i_2);
dp_i_2 = dp_i_1;
dp_i_1 = dp_i;
}
return dp_i;
}
}