【LeetCode-5】5.最长回文子串

5. 最长回文子串

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。

解题思路1:双指针扩展中心法

思路参考

/*
    寻找回文串的问题核心思想是:从中间开始向两边扩散来判断回文串。
*/
class Solution {
    
    public String longestPalindrome(String s) {
        //空间复杂度O(1)
        String res = "";
        if(s == null || s.length() == 0) {
            return res;
        }

        for(int i = 0; i < s.length(); i++) {
            // 以 s[i] 为中心的最长回文子串
            String s1 = palindrome(s, i, i);
            // 以 s[i] 和 s[i+1] 为中心的最长回文子串
            String s2 = palindrome(s, i, i + 1);
            if(res.length() < s1.length()) {
                res = s1;
            }
            if(res.length() < s2.length()) {
                res = s2;
            }
        }
        
        return res;
    }
    
    //使用双指针,l和r从字符串中心向字符串两边出发,寻找最长回文串
    //为什么要传入两个指针 l 和 r 呢?因为这样实现可以同时处理回文串长度为奇数和偶数的情况:
    public String palindrome(String s, int l, int r) {
        // 防止索引越界
        while(l >= 0 && r < s.length() && s.charAt(l) == s.charAt(r)) {
            // 向两边展开
            l--;
            r++;
        }
        // 返回以 s[l] 和 s[r] 为中心的最长回文串
        return s.substring(l + 1, r);
    }
}

复杂度分析:
时间复杂度 O(N^2),空间复杂度 O(1)。

解题思路2:动态规划

值得一提的是,这个问题可以用动态规划方法解决,时间复杂度一样,但是空间复杂度至少要 O(N^2) 来存储 DP table。这道题是少有的动态规划非最优解法的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值