- 博客(4)
- 收藏
- 关注
原创 初探机器学习
一、AI、ML、DL三者的关系三者是包含与被包含的关系人工智能AI:让计算机像人一样思考机器学习(ML):提升计算机模拟人类思考能力的方法深度学习(DL):通过神经网络方式进行机器学习的方法二、机器学习的大致流程特征提取数据预处理训练模型测试模型模型评估、改进三、机器学习算法3.1 回归3.1.1线性回归 ——找到一条直线来预测目标值原理:回归是指确定两种或两种以上变量...
2018-10-16 15:44:08 229
原创 笔记--分析放价预测的具体过程
一 - 方案概述数据集通过79个特征变量来描述爱荷华州埃姆斯的住宅房屋的各个方面,需要预测每个住宅的最终价格,并提交预测结果。问题转化成回归问题,评估指标为均方根误差(RMSE)。【均方根误差:均方根误差又叫标准误差它是观测值与真值偏差的平方和观测次数n比值的平方根,标准差是用来衡量一组数自身的离散程度,而均方根误差是用来衡量观测值同真值之间的偏差,它们的研究对象和研究目的不同,但是计算过程...
2018-10-20 11:17:22 204
转载 机器学习基本流程及内容
一、特征提取1.1 One-hot编码什么是one-hot编码?one-hot编码,又称独热编码、一位有效编码。其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候,其中只有一位有效。one hot在特征提取上属于词袋模型(bag of words)。关于如何使用one-hot抽取文本特征向量我们通过以下例子来说明。假设我们的语料库中有三段话:我爱中...
2018-10-17 10:36:56 905
转载 梯度下降和随机梯度下降的区别
在学习机器学习的过程中梯度下降这个词出现的频率很高,在运用的过程中不能很好的理解算法的意思,于是从网路上查找了一些资料。一.介绍 梯度下降法(gradient descent)是求解无约束最优化问题的一种常用方法,有实现简单的优点。梯度下降法是迭代算法,每一步需要求解目标函数的梯度向量。二.应用场景 1.给定许多组数据(xi, yi),xi (向量)为输入,yi为输出。设计一个线性函数...
2018-10-16 13:02:49 3385
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人