【计算机视觉CV | 笔记】one-stage目标检测总结

本文详细介绍了YOLO(You Only Look Once)系列的目标检测算法,从YOLOv1到YOLOv3的改进,包括引入的anchor概念、多尺度训练、ResNet结构以及Focal Loss等。同时,讨论了YOLO与其他one-stage方法如RetinaNet、SSD的对比,并解释了mAP作为评估指标的重要性。
摘要由CSDN通过智能技术生成

前言

笔者只是一名学生,初入CV领域,写这篇的目的是帮助自己梳理学习过的内容,且为大家学习提供或许有用的学习材料。文末附手写笔记。

目录

YOLOv1、YOLOv2、YOLOv3、其他方法(RetinaNet、SSD、anchor free)、mAP

一、YOLOv1【2015】

1、主要思想
将图片分成S×S的小格子,某个物体的中心落在某个小格子上,该cell将负责预测这个物体。
每个cell对应B个bbox(bbox是网络生成的,不像人为指定的anchor),每个bbox对应5个值,分别为x,y,h,w,confidence,分别代表bbox的位置长宽和该cell是目标的置信度。
最终输出即为 S×S×(B×2+10),文章中S=7,B=2。
在这里插入图片描述
2、Loss Function
在这里插入图片描述
注意:网络输出为S×S×(B×2+10),label需要转换为对应格式才能计算loss
2.1 Loss、框的回归损失
2.2 loss、置信度损失(是否有物体)
2.3 loss、分类损失

一些问题
a、为什么w和h需要开根号?抑制大框的影响
b、2.2loss中为什么还需要考虑noobj的?为了考虑到负样本,否则全预测为背景loss就很小了,因为有目标的cell占比很少只有3个cell共有49个
c、每个cell对应两个bbox,用哪个bbox的坐标来回归?confidence较大的bbox

3、优缺点总结
pros:速度快,可达45fps,当时较快的faster rcnn也只有18fps
cons:
a、一个cell只负责预测一个物体,但如果2个物体都落在这个cell内呢?即不适合与密集目标
b、S=7,格子较大。不适合于小物体
c、bbox的width-height ratio是由train得到的,测试时若有新的w/h则不适应
d、没有BN,训练较慢

二、YOLOv2【2016】

1、改进点
a、add BN
b、High Resolution Classifier(focusing on backbone)
原本的bcakbone是在ImageNet上训练的,大大部分都是224×224&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值