在线性代数中,线性函数(Linear Function)特指满足严格线性性质的映射,其定义和性质与初等数学中的“一次函数”有显著区别。以下是线性代数视角下线性函数的核心性质:
一、线性函数的定义
设 V V V 和 W W W 是同一数域 F \mathbb{F} F 上的向量空间,函数 f : V → W f: V \to W f:V→W 称为线性函数(或线性变换),当且仅当对任意 u , v ∈ V \mathbf{u}, \mathbf{v} \in V u,v∈V 和 k ∈ F k \in \mathbb{F} k∈F,满足:
- 叠加性: f ( u + v ) = f ( u ) + f ( v ) f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v}) f(u+v)=f(u)+f(v)
- 齐次性: f ( k u ) = k f ( u ) f(k\mathbf{u}) = kf(\mathbf{u}) f(ku)=kf(u)
关键特征:
- 必须满足 f ( 0 ) = 0 f(\mathbf{0}) = \mathbf{0} f(0)=0(原点保持)。
- 形如 f ( x ) = A x f(\mathbf{x}) = A\mathbf{x} f(x)=Ax(矩阵乘法),其中 A A A 是 m × n m \times n m×n 矩阵(当 V = F n V = \mathbb{F}^n V=Fn, W = F m W = \mathbb{F}^m W=Fm 时)。
二、核心性质
1. 保持线性组合
对任意向量
u
1
,
u
2
,
…
,
u
k
∈
V
\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \in V
u1,u2,…,uk∈V 和标量
c
1
,
c
2
,
…
,
c
k
∈
F
c_1, c_2, \dots, c_k \in \mathbb{F}
c1,c2,…,ck∈F,有:
f
(
∑
i
=
1
k
c
i
u
i
)
=
∑
i
=
1
k
c
i
f
(
u
i
)
.
f\left( \sum_{i=1}^k c_i \mathbf{u}_i \right) = \sum_{i=1}^k c_i f(\mathbf{u}_i).
f(i=1∑kciui)=i=1∑kcif(ui).
意义:线性函数将输入的线性组合映射为输出的线性组合,这是线性代数的基石。
2. 矩阵表示
- 在有限维空间中,线性函数 f : F n → F m f: \mathbb{F}^n \to \mathbb{F}^m f:Fn→Fm 唯一对应一个 m × n m \times n m×n 矩阵 A A A,使得 f ( x ) = A x f(\mathbf{x}) = A\mathbf{x} f(x)=Ax。
- 不同基底下的矩阵通过相似变换关联,但其秩、行列式等性质保持不变。
3. 核与像
- 核(Kernel): ker ( f ) = { x ∈ V ∣ f ( x ) = 0 } \ker(f) = \{ \mathbf{x} \in V \mid f(\mathbf{x}) = \mathbf{0} \} ker(f)={x∈V∣f(x)=0},是 V V V 的子空间。
- 像(Image): Im ( f ) = { f ( x ) ∣ x ∈ V } \text{Im}(f) = \{ f(\mathbf{x}) \mid \mathbf{x} \in V \} Im(f)={f(x)∣x∈V},是 W W W 的子空间。
- 秩-零度定理: dim ( ker ( f ) ) + dim ( Im ( f ) ) = dim ( V ) \dim(\ker(f)) + \dim(\text{Im}(f)) = \dim(V) dim(ker(f))+dim(Im(f))=dim(V)。
4. 可逆性
- 若 f f f 是双射(单射且满射),则存在逆变换 f − 1 : W → V f^{-1}: W \to V f−1:W→V,且 f − 1 f^{-1} f−1 也是线性函数。
- 可逆的充要条件是 ker ( f ) = { 0 } \ker(f) = \{ \mathbf{0} \} ker(f)={0} 且 Im ( f ) = W \text{Im}(f) = W Im(f)=W。
5. 运算性质
- 加法:若 f , g : V → W f, g: V \to W f,g:V→W 是线性函数,则 ( f + g ) ( x ) = f ( x ) + g ( x ) (f + g)(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x}) (f+g)(x)=f(x)+g(x) 也是线性函数。
- 数乘:若 c ∈ F c \in \mathbb{F} c∈F,则 ( c f ) ( x ) = c f ( x ) (cf)(\mathbf{x}) = c f(\mathbf{x}) (cf)(x)=cf(x) 是线性函数。
- 复合:若 f : V → W f: V \to W f:V→W 和 g : W → U g: W \to U g:W→U 是线性函数,则 g ∘ f : V → U g \circ f: V \to U g∘f:V→U 也是线性函数,对应矩阵乘积 B A BA BA。
三、与仿射函数的对比
在初等数学中,“线性函数”通常指一次函数 f ( x ) = k x + b f(x) = kx + b f(x)=kx+b,但在线性代数中:
- 线性函数:必须满足 f ( 0 ) = 0 f(\mathbf{0}) = \mathbf{0} f(0)=0,即 b = 0 b = 0 b=0(如 f ( x ) = k x f(x) = kx f(x)=kx)。
- 仿射函数:形如 f ( x ) = A x + b f(\mathbf{x}) = A\mathbf{x} + \mathbf{b} f(x)=Ax+b( b ≠ 0 \mathbf{b} \neq \mathbf{0} b=0),不满足齐次性,因此不是线性变换。
四、应用场景
- 几何变换:旋转、缩放、投影等操作均可通过线性变换实现。
- 解线性方程组:将方程组 A x = b A\mathbf{x} = \mathbf{b} Ax=b 视为线性变换 f ( x ) = A x f(\mathbf{x}) = A\mathbf{x} f(x)=Ax 的像问题。
- 特征值分解:分析线性变换在特定方向上的伸缩行为(如主成分分析 PCA)。
- 量子力学:量子态的演化由线性算符描述。
五、典型例子
- 投影变换: f ( x ) = P x f(\mathbf{x}) = P\mathbf{x} f(x)=Px,其中 P P P 是投影矩阵。
- 旋转矩阵:二维旋转 f ( x ) = ( cos θ − sin θ sin θ cos θ ) x f(\mathbf{x}) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \mathbf{x} f(x)=(cosθsinθ−sinθcosθ)x。
- 导数算子:在多项式空间中, f ( p ( x ) ) = p ′ ( x ) f(p(x)) = p'(x) f(p(x))=p′(x) 是线性变换。
六、总结
线性代数中的线性函数是保持向量空间结构的映射,其核心在于保持线性组合和矩阵表示。与初等数学中的“线性函数”不同,这里严格排除了常数项,专注于线性变换的代数性质和几何意义。这一概念是线性代数的核心工具,广泛应用于工程、物理、计算机科学等领域。