数据分析的流程大致如下
一、分析目的
本次主要根据淘宝用户的行为数据,分析挖掘有价值的信息,通过数据清洗、数据分析、数据可视化、最后结合使用相关算法模型挖掘数据价值,从而为营销提供相应的数据支撑
二、数据来源
本次使用的数据来源于阿里天池:https://tianchi.aliyun.com/dataset/dataDetail?dataId=46&userId=1
数据说明如下:
字段 | 字段描述 |
user_id | 用户ID |
item_id | 商品ID |
behavior_type | 行为类型 |
user_geohash | 用户地理位置 |
item_category | 商品类目 |
time | 行为发生的具体时间 |
三、数据清洗
1、导入相关的第三方模块
import numpy as np
import pandas as pd
import matplotlib as mpl
from matplotlib import pyplot as plt
import seaborn as sns
import warnings
# 有时候运行代码时会有很多warning输出,像提醒新版本之类的,如果不想这些乱糟糟的输出,可以使用如下代码
warnings.filterwarnings('ignore')
# 用来显示中文标签
mpl.rcParams["font.family"] = "SimHei"
# 用来显示负号
mpl.rcParams["axes.unicode_minus"] = False
2、读入数据并查看
# 写入数据
df = pd.read_csv(r"C:\Users\shanyonggang\Desktop\培训材料\tianchi_data\tianchi_mobile_recommend_train_user.csv",sep=',')
分别查看数据的数量、数据的总体预览
# 显示前五行
df.head()
# 数据数量
df.shape
# 总体预览
df.info()
结果如下:
可以看到用户地理位置数据缺失比较严重,同时用户行为采集时间点数据有一条缺失,其数据类型后续需要转换成时间格式进行分析。
3、缺失值处理
主要是为了处理原始数据中的缺失值,对于缺失值较多的,可以直接删除其特征,缺失比较小的,可以用其他数据进行替代(如:平均值、中位数、前后值填充等,具体根据实际情况)
# 查看空值(发现其中位置信息缺失比较严重,此处将该列删除,同时时间列有一行为空)
df.isnull().sum()
# 检索时间列为空的行
df[df["time"].isnull().values==True]
# 删除地理位置列(两种方式),主要是因为其缺省较多
# data.drop("user_geohash",axis=1)
data = df.drop(columns=["user_geohash"])
# 删除行中有空值的
data = data.dropna(axis=0,how='any')
最终处理后的数据如下:
4、增加额外特征
此处主要是针对时间项,首先需要将时间由字符串形式转换成时间格式,另外增加日期、小时、年、月、星期等特征,具体操作如下:
# 将时间按照日期和时间点分开
data["date"] = data.time.apply(lambda x:x.split(" ")[0])
# 获取用户行为采集的时间点
data["hour"] = data.time.str[-2:]
# 日期转出时间格式
data["date"] = pd.to_datetime(data["date"])
# 时间戳转出时间格式
data["time"] = pd.to_datetime(data["time"])
# 小时转出整型格式
data["hour"] = data["hour"].astype(int)
# 获取年、月、周几(其中周一为1)
data["year"] = data.time.apply(lambda x:x.year)
data["month"] = data.time.apply(lambda x:x.month)
data["weekday"] = data.time.apply(lambda x:x.weekday()+1)
最终结果如下:
接下来我们按照时间进行排序,并重新设置索引
# 按照时间升序排序
data = data.sort_values(by="time",ascending=True)
# 删除原始索引,生成新的索引
data.reset_index(drop=True,inplace=True)
最终结果如下:
四、数据分析
上面我们对数据进行了清洗,接下来我们针对清洗好的数据进行分析,首先对下面可能用的名词进行相应的解释