【刷题1】LeetCode 64. 最小路径和 java题解

终身役役而不见其成功,苶然疲役而不知其所归

1.题目

在这里插入图片描述

2.动态规划

2.1 分析

状态转移方程:
dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j]。

初始条件:
dp[0][0]=grid[0][0];
dp[■][0]=dp[■-1][0]+grid[■][0];
dp[0][■]=dp[0][■-1]+grid[0][■]

返回值:
dp[m-1][n-1]

2.2 代码

class Solution {
    public int minPathSum(int[][] grid) {
        int m=grid.length;
        int n=grid[0].length;
        int[][] dp=new int[m][n];
        dp[0][0]=grid[0][0];
        for(int j=1;j<n;j++){
            dp[0][j]=dp[0][j-1]+grid[0][j];
        }
        for(int i=1;i<m;i++){
            dp[i][0]=dp[i-1][0]+grid[i][0];
        }
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                dp[i][j]=Math.min(dp[i-1][j],dp[i][j-1])+grid[i][j];
            }
        }
        return dp[m-1][n-1];
    }
}

2.3 复杂度

时间复杂度O(MN)
空间复杂度O(MN)

2.4 结果

在这里插入图片描述

3.空间优化

3.1 分析

使用原数组

3.2 代码

class Solution {
    public int minPathSum(int[][] grid) {
        int m=grid.length;
        int n=grid[0].length;
        for(int j=1;j<n;j++){
            grid[0][j]=grid[0][j-1]+grid[0][j];
        }
        for(int i=1;i<m;i++){
            grid[i][0]=grid[i-1][0]+grid[i][0];
        }
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                grid[i][j]=Math.min(grid[i-1][j],grid[i][j-1])+grid[i][j];
            }
        }
        return grid[m-1][n-1];
    }
}

3.3 复杂度

空间复杂度O(1)

3.4 结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值