- 博客(10)
- 资源 (2)
- 收藏
- 关注
原创 2D网络模型总结3:Resnet和DenseNet
ResNet原文链接:https://blog.csdn.net/u013181595/article/details/80990930ResNet(Residual Neural Network)由微软研究院的Kaiming He等四名华人提出,通过使用ResNet Unit成功训练出了152层的神经网络,并在ILSVRC2015比赛中取得冠军,在top5上的错误率为3.57%,同时参数量比...
2019-12-16 16:09:18 1224
原创 2D网络模型框架总结2:VGG网络与GoogLeNet
VGG网络2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的深度卷积神经网络:VGGNet,并取得了ILSVRC2014比赛分类项目的第二名(第一名是GoogLeNet,也是同年提出的)和定位项目的第一名。但在多个迁移学习中VGG优于GooLeNet,VGGNet可以看成是加深版本的AlexNet,都是由卷积...
2019-12-15 16:19:04 934
原创 2D网络模型框架总结1
AlexNet:5层Lenet-5:用于写字错误率小于0.8%,共七层(不包含输入)输入为32*32像素大小,网络结构如下:Input: 32×32Conv1:28×28×6Conv2:14×14×6欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdow...
2019-12-14 20:39:18 318
转载 GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition
GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition1、四个问题要解决什么问题?3D shape recognition。用了什么方法解决?采用多视图(multi-view)的方法。在MVCNN的基础之上,提出了group-view convolutional neural network(GV...
2019-11-11 21:08:46 1339
转载 MVCNN:Multi-view Convolutional Neural Networks for 3D Shape Recognition
原文链接:https://blog.csdn.net/u010167269/article/details/51498927ICCV 2015:《Multi-view Convolutional Neural Networks for 3D Shape Recognition》,简称:MVCNN。创新点:用物体的三维数据从不同“视角”所得到的二维渲染图,作为原始的训练数据。用经典、成熟的二维...
2019-11-11 17:03:04 3139
原创 多角度特征融合的视频人脸纹理表示及识别
多角度特征融合的视频人脸纹理表示及识别吉林大学学报 王玉 申铉京 陈海鹏 谭颖摘要 提出了一种在 Gabor变换幅值域内提取3个正交平面上的局部二值模式的多角度特征融合的视频人脸纹理表示及其识别方法。 首先对人脸 Gabor小波变换得到增强的Gabor幅值图谱。 然后采用3个正交平面上的局部二值模式提取视频纹理特征。 最后采用基于Fisher加权的 Chi平方概率...
2019-11-01 10:25:16 1093
翻译 什么是 Asynchronous Advantage Actor-Critic (A3C)
A3C 其实只是这种平行方式的一种而已, 它采用的是我们之前提到的 Actor-Critic 的形式. 为了训练一对 Actor 和 Critic, 我们将它复制多份红色的, 然后同时放在不同的平行宇宙当中, 让他们各自玩各的. 然后每个红色副本都悄悄告诉黑色的 Actor-Critic 自己在那边的世界玩得怎么样, 有哪些经验值得分享. 然后还能从黑色的 Actor-Critic 这边再次获取...
2019-06-24 14:44:07 428
原创 李航 统计学习方法 第一章 绪论
李航 统计学习方法 第一章 绪论第一章 绪论1.1 统计学习1.2 监督学习1.3 统计学习三要素1.4 模型评估和选择1.5 正则化与交叉验证1.6 泛化能力1.7 生成模型和判别模型1.8 分类问题1.9 标注问题和回归1.10 极大似然估计和贝叶斯估计1.1 统计学习a 得到一个有限的训练数据集合b 确定包含所有可能模型的假设空间c 确定模型选择的规则,即选择学习策略d 实现求...
2019-06-22 21:31:33 246
翻译 什么是 Deep Deterministic Policy Gradient (DDPG)
什么是 Deep Deterministic Policy Gradient (DDPG)DDPG 最大的优势就是能够在连续动作上更有效地学习.将DDPG进行拆分:如上图所示,我们将 DDPG 分成 ‘Deep’ 和 ‘Deterministic Policy Gradient’, 然后 ‘Deterministic Policy Gradient’ 又能被细分为 ‘Deterministi...
2019-06-20 10:26:08 891
转载 莫烦-强化学习-Actor Critic方法
莫烦-强化学习-Actor Critic方法链接: link.6 什么是Actor Critic方法Actor Critic (演员评判家), 它合并了 以值为基础 (比如 Q learning) 和 以动作概率为基础 (比如 Policy Gradients) 两类强化学习算法.。Actor-Critic 的 Actor 的前生是 Policy Gradients, 这能让它毫不费力地在...
2019-06-19 11:03:38 780
Foot 3D Model Reconstruction Method based on Mobile Phone Photographing.pdf
2020-04-17
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人