https://ac.nowcoder.com/acm/contest/908/B
题目就是让你求并联电路的电阻值模p意义下的值。
思路代码里
费马小定理ac
import java.util.Scanner;
//费马小定理,分数取余 (a/b)modp=a*(b^(p-2))modp,当b与p互质时成立
//推出分子 a[i]=a[i-1]+2*b[i-1]
//分母 b[i]=a[i]+b[i-1]
//在推导求最后的分子分母时,这个值可能会很大
public class Main {
static long quick_mod(long a,long b,long mod){
long res=1;
for(;b>0;b>>=1){
if((b&1)!=0){
res=res*a%mod;
}
a=a*a%mod;
}
return res;
}
static long qumod(long a,long b,long mod){
return (a%mod)*quick_mod(b,mod-2,mod)%mod;
}
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
long n=sc.nextLong();
long r=sc.nextLong();
long mod=sc.nextLong();
long a,b;
a=1;
b=1;
for(int i=1;i<n;i++){
a+=2*b;
b+=a;
a=qumod(a,b,mod);//这两行的意义其实不是很理解
b=1;
}
long ans=(r%mod)*qumod(a,b,mod)%mod;
System.out.println(ans);
sc.close();
}
}
拓展欧几里得AC
画个图推一下最终电阻的递推式子
import java.util.Scanner;
//用扩展欧几里得算法求逆元算分数取余
//这个并联电阻可以推导出 1/r[i]=1/r+1/(2*r+r[i-1])=> r[i]=r*(2*r+r[i-1])/(3*r+r[i-1])
public class Main {
static long ans[]=new long[100005];//存储最终的答案
static long n,r,p,x,y;
static void exgcd(long a,long p){
if(p==0){
x=1;
y=0;
return;
}
exgcd(p,a%p);
long k=x;
x=y;
y=k-a/p*y;
}
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
n=sc.nextLong();
r=sc.nextLong();
p=sc.nextLong();
r=r%p;
ans[1]=r;
long a,b;
for(int i=2;i<=n;i++){
a=(r*ans[i-1]%p+2*r*r%p)%p;
b=(3*r+ans[i-1])%p;
exgcd(b,p);
x=(x%p+p)%p;
ans[i]=a*x%p;
}
System.out.println(ans[(int) n]);
sc.close();
}
}