实现一个将两个模型输出结合起来的新模型,通常涉及到“模型堆叠”(model stacking)或“元学习”(meta-learning)的概念。在这个情况下,您想结合关键词相关性模型和关键词流量模型的输出。以下是实现这一过程的步骤:
训练基础模型:
首先,分别训练两个基础模型:一个用于评估关键词相关性,另一个用于预测关键词流量。
每个模型将为每个关键词生成预测值或得分。
创建元特征:
使用两个基础模型的输出作为新的特征集。例如,您可以将关键词相关性模型的输出和关键词流量模型的输出作为两个特征。
这些特征称为“元特征”(meta-features),因为它们是从其他模型的输出中派生出来的。
划分数据集:
确保您有一个独立的数据集用于训练和验证元模型。这可以是您原始数据集的一部分,但不应该用于基础模型的训练。
重要的是要避免信息泄露,确保元模型的训练和验证是公平和独立的。
训练元模型:
使用元特征来训练一个新的模型。这个模型可以是线性回归、逻辑回归、或者其他更复杂的机器学习模型。
元模型的任务是综合这些元特征来生成一个最终的关键词评分。例如,它可能学习到在某些情况下,流量比相关性更重要,反之亦然。
验证和调整:
使用您留出的验证集来评估元模型的性能。
根据验证结果调整模型参数和特征选择,以优化性能。
实际应用: