机器学习
william.long.wong
这个作者很懒,什么都没留下…
展开
-
百面机器学习-模型评估总结(完善中...)
一、分类模型评估 二、回归模型评估 三、参考文献 模型评估总结:https://blog.csdn.net/u014182497/article/details/79384233 机器学习模型评估的方法总结:https://blog.csdn.net/sinat_16388393/article/details/91427631 模型评估总结:https://www.pianshen.com/article/47171036655/ 机器学习之分类模型评估总结:https://zhuanlan.zhihu.原创 2021-02-18 23:18:12 · 163 阅读 · 0 评论 -
百面机器学习-特征工程总结(完善中...)
一、什么是特征工程 最大限度从数据中提取特征供算法和模型使用。 二、为什么要特征工程 数据和特征决定了机器学习的上界,而模型和算法只是不断逼近这个上界。 三、怎样做特征工程 数据预处理: 1. 无量纲化 2. 标准化 3. 区间缩放法(归一化) 4. 定量特征二值化 5. 定性特征哑编码 6. 缺失值计算 7. 数据变换 特征选择: 1. 特征是否发散 2. 特征与目标的相关性 filter过滤法: 方差选择法、相关系数法、卡方检验法、互信息法 wrapper包装法: 递归特征消除法 embedded集成法原创 2021-02-18 22:54:10 · 231 阅读 · 1 评论