java实现树的深度优先遍历和广度优先遍历

1.深度优先遍历DFS

深度优先遍历是图论中的经典算法,其利用了深度优先搜索算法可以产生目标图的相应拓扑排序表,采用拓扑排序表可以解决很多相关的图论问题,如最大路径问题等等。

深度优先搜索用栈(stack)来实现,整个过程可以想象成一个倒立的树形:

1、把根节点压入栈中。

2、每次从栈中弹出一个元素,搜索所有在它下一级的元素,把这些元素压入栈中。并把这个元素记为它下一级元素的前驱。

3、找到所要找的元素时结束程序。

4、如果遍历整个树还没有找到,结束程序。

递归实现

   List<TreeNode> treeNodeList = new ArrayList<>();;
    public List<TreeNode> dfsRec(TreeNode root) {
        
        if (root == null) {
            return null;
        }
        treeNodeList.add(root);
        //System.out.print(root.value+" ");
        dfsRec(root.left);
        dfsRec(root.right);
        return treeNodeList;
    }

非递归实现

//深度优先遍历
    List<TreeNode> treeList ;
    public List<TreeNode> dfs(TreeNode root) {
        treeList = new ArrayList<>();
        if(root==null) {
            return  null;
        }

        Stack<TreeNode> myStack=new Stack<>();
        myStack.add(root);

        while(!myStack.isEmpty()) {
            TreeNode node=myStack.pop();    //弹出栈顶元素
            //System.out.print(node.value+" ");
            treeList.add(node);
            //向栈中先压入右子树,在压入左子树。这样出栈时,先出左子树再出右子树.也就是,先遍历左边,后遍历右边
            if(node.right!=null) {
                myStack.push(node.right);
            }
            if(node.left!=null) {
                myStack.push(node.left);
            }
        }
        return treeList;
    }

2.广度优先遍历BFS

Dijkstra单源最短路径算法和Prim最小生成树算法都采用了广度优先遍历。其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。

实现:

广度优先搜索使用**队列(queue)**来实现,整个过程也可以看做一个倒立的树形:

1、把根节点放到队列的末尾。

2、每次从队列的头部取出一个元素,查看这个元素所有的下一级元素,把它们放到队列的末尾。并把这个元素记为它下一级元素的前驱。

3、找到所要找的元素时结束程序。

4、如果遍历整个树还没有找到,结束程序。 [1]

应用地方:Dijkstra单源最短路径算法和Prim最小生成树算法和层序遍历
//广度优先遍历
    public List<TreeNode> bfs(TreeNode root) {
        treeList = new ArrayList<>();
        if(root == null){
            return null;
        }


        Queue<TreeNode> queue = new ArrayDeque<>();
        queue.add(root);

        while (!queue.isEmpty()) {
            TreeNode node = queue.poll(); // Java 的 pop 写作 poll()
            treeList.add(node);
            //System.out.print(node.value);
            if (node.left != null) {
                queue.add(node.left);
            }
            if (node.right != null) {
                queue.add(node.right);
            }
        }
        return treeList;
    }

3.验证

1.节点类的代码
package tree;

public class TreeNode {

    public int value;

    public TreeNode leftNode;

    public TreeNode rightNode;

    public int getValue() {
        return value;
    }

    public void setValue(int value) {
        this.value = value;
    }

    public TreeNode getLeftNode() {
        return leftNode;
    }

    public void setLeftNode(TreeNode leftNode) {
        this.leftNode = leftNode;
    }

    public TreeNode getRightNode() {
        return rightNode;
    }

    public void setRightNode(TreeNode rightNode) {
        this.rightNode = rightNode;
    }

    public TreeNode() {
    }

    public TreeNode(int value) {
        this.value = value;
    }

}

2.初始化树类的代码
package tree;

import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.List;
import java.util.Queue;

public class BinaryTree {
    //根结点,默认为null
    private TreeNode root = null;

    public TreeNode getRoot() {
        return root;
    }
    //    树的节点已经不需要按顺序排好
     public void buildBinaryNode(TreeNode node,int data){
        //如果根结点是空,那么设置根结点,并且设置数据域
        if(root == null){
            root = new TreeNode(data);
        }else{
            /**
             * 根结点不为空,那么判断数据是否小于当前结点的数据
             */
            if(data < node.getValue()){
                //如果小于,判断当前结点是否有左叶子结点
                if(node.getLeftNode() == null){
                    //左叶子结点为空,设置左叶子结点,并且设置数据
                    node.setLeftNode(new TreeNode(data));
                }else{
                    //左叶子结点不为空,递归调用构建二叉树的函数
                    buildBinaryNode(node.getLeftNode(),data);
                }
            }else{
                //如果大于或等于,判断当前结点是否存在右叶子结点
                if(node.getRightNode()==null){
                    //右叶子结点为空,设置右叶子结点,并且设置数据域
                    node.setRightNode(new TreeNode(data));
                }else{
                    //右叶子几点不为空,递归调用构建二叉树的函数
                    buildBinaryNode(node.getRightNode(),data);
                }
            }
        }
    }
    public BinaryTree createBinaryTree(int[] datas){
        BinaryTree binaryTree = new BinaryTree();
        for (int data : datas) {
            binaryTree.buildBinaryNode(binaryTree.getRoot(),data);
        }

        return binaryTree;
    }



}

3.验证----我将遍历方法写在了main()方法所在的BinaryTree类
public static void main(String[] args) {
        int[] data2 = {8,7,4,10,9,10};
        BinaryTree binaryTree = new BinaryTree();
        BinaryTree biTree = binaryTree.createBinaryTree(data2);
    
    System.out.println("深度优先遍历递归版:");
        List<TreeNode> treeNodeList = biTree.dfsRec(tree);
        for (TreeNode treeNode : treeNodeList) {
            System.out.print(treeNode.value+" ");
        }
        System.out.println();


        System.out.println("深度优先遍历非递归版:");
        List<TreeNode> treeNodes = biTree.dfs(tree);
        for (TreeNode treeNode : treeNodes) {
            System.out.print(treeNode.value+" ");
        }
        System.out.println();
        
        System.out.println("广度优先遍历:");
        List<TreeNode> bfs = biTree.bfs(tree);
        for (TreeNode bf : bfs) {
            System.out.print(bf.value+" ");
        }



}
4.结果

在这里插入图片描述

Java中,深度优先搜索(Depth-First Search, DFS)广度优先搜索(Breadth-First Search, BFS)是两种常用的图或树的遍历算法。 **深度优先遍历(DFS):** DFS通常通过递归或栈数据结构来实现。对于无向图,从任意起点开始,沿一条边深入直到到达终点,然后回溯到上一个节点继续探索未访问的分支。以下是DFS的基本步骤: 1. 选择一个起始节点。 2. 将当前节点标记为已访问。 3. 遍历当前节点的所有未访问邻接节点。 4. 对每个邻接节点递归执行步骤2-3。 5. 当所有节点都被访问过时,结束遍历。 **Java DFS示例(递归版):** ```java import java.util.*; public class Graph { private int[][] adj; // 添加递归版本DFS方法... } // 调用DFS void dfs(int node) { visited[node] = true; System.out.print(node + " "); for (int i : adj[node]) { if (!visited[i]) { dfs(i); } } } ``` **广度优先遍历(BFS):** BFS则使用队列来遍历,按层次顺序逐层访问节点。具体步骤如下: 1. 创建一个空的队列,并将起始节点加入队列。 2. 初始化一个集合来存储已访问过的节点。 3. 当队列非空时,循环执行以下操作: a. 弹出队首元素作为当前节点。 b. 标记当前节点为已访问。 c. 将当前节点的所有未访问邻接节点加入队列。 4. 继续上述过程,直到队列为空。 **Java BFS示例(使用队列):** ```java import java.util.*; public class Graph { private int[][] adj; // 添加BFS方法... } // 调用BFS void bfs(int startNode) { Queue<Integer> queue = new LinkedList<>(); boolean[] visited = new boolean[numVertices]; queue.add(startNode); visited[startNode] = true; while (!queue.isEmpty()) { int node = queue.poll(); System.out.print(node + " "); for (int neighbor : adj[node]) { if (!visited[neighbor]) { queue.add(neighbor); visited[neighbor] = true; } } } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值