1.题目
已知存在一个按非降序排列的整数数组 nums ,数组中的值不必互不相同。
在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了旋转 ,使数组变为 [nums[k], nums[k+1], …, nums[n-1], nums[0], nums[1], …, nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,4,4,5,6,6,7] 在下标 5 处经旋转后可能变为 [4,5,6,6,7,0,1,2,4,4] 。
给你旋转后的数组 nums 和一个整数 target ,请你编写一个函数来判断给定的目标值是否存在于数组中。如果 nums 中存在这个目标值 target ,则返回 true ,否则返回 false 。
示例 1:
输入:nums = [2,5,6,0,0,1,2], target = 0
输出:true
示例 2:
输入:nums = [2,5,6,0,0,1,2], target = 3
输出:false
提示:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
题目数据保证 nums 在预先未知的某个下标上进行了旋转
-104 <= target <= 104
进阶:
这是33.搜索旋转排序数组的延伸题目,本题中的 nums 可能包含重复元素。
这会影响到程序的时间复杂度吗?会有怎样的影响,为什么?
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/search-in-rotated-sorted-array-ii
2.思路
(1)二分搜索
本题与33.搜索旋转排序数组这题类似,只不过本题中数组中的值不必互不相同,即数组中可能有重复元素,那么在使用二分搜索时就可能会出现 nums[left] = nums[mid] = nums[right] 的情况,此时不能判断区间 [left, mid] 和区间 [mid, right] 的有序性。所以针对这种情况,只能将当前的二分区间的左边界加一,右边界减一,然后在新区间上继续二分查找即可。
(2)顺序查找法
如果不考虑时间复杂度,也可以考虑使用最简单的顺序查找法。
相关题目:
LeetCode_二分搜索_中等_33.搜索旋转排序数组
LeetCode_二分搜索_中等_153.寻找旋转排序数组中的最小值
LeetCode_二分搜索_困难_154.寻找旋转排序数组中的最小值 II
3.代码实现(Java)
//思路1————二分搜索
class Solution {
public boolean search(int[] nums, int target) {
int length = nums.length;
int left = 0, right = length - 1;
while (left <= right) {
int mid = (left + right) / 2;
if (nums[mid] == target) {
return true;
}
if (nums[left] == nums[mid] && nums[mid] == nums[right]) {
//消除数组中重复元素给二分查找带来的影响
left++;
right--;
} else if (nums[left] <= nums[mid]) {
if (nums[left] <= target && target < nums[mid]) {
right = mid - 1;
} else {
left = mid + 1;
}
} else {
if (nums[mid] < target && target <= nums[length - 1]) {
left = mid + 1;
} else {
right = mid - 1;
}
}
}
return false;
}
}
//思路2————顺序查找法
class Solution {
public boolean search(int[] nums, int target) {
for (int i = 0; i < nums.length; i++) {
if (target == nums[i]) {
return true;
}
}
return false;
}
}