LeetCode_动态规划_中等_931.下降路径最小和

本文解析了如何使用Java实现LeetCode上的第126题“最小下降路径和”,介绍了动态规划的方法,展示了从矩阵中找到通过选择相邻元素形成下降路径的最小和的过程。

1.题目

给你一个 n x n 的方形整数数组 matrix ,请你找出并返回通过 matrix 的下降路径的最小和

下降路径可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。

示例 1:
在这里插入图片描述

输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径

示例 2:
在这里插入图片描述

输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径

提示:
n == matrix.length == matrix[i].length
1 <= n <= 100
-100 <= matrix[i][j] <= 100

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-falling-path-sum

2.思路

(1)动态规划

3.代码实现(Java)

//思路1————动态规划
class Solution {
	public int minFallingPathSum(int[][] matrix) {
	    int n = matrix.length;
	    // res 保存下降路径最小和,初始值为 Integer.MAX_VALUE
	    int res = Integer.MAX_VALUE;
	    // dp[i] 存储每一层对应元素的最小值
	    int[] dp = new int[n + 2];
	    //初始化 dp
	    dp[0] = dp[n + 1] = Integer.MAX_VALUE;
	    for (int j = 1; j <= n; j++) {
	        dp[j] = matrix[0][j - 1];
	    }
	    //处理每一行
	    for (int i = 1; i < n; i++) {
	        int temp = 0, last = Integer.MAX_VALUE;
	        //处理每一列
	        for (int j = 1; j <= n; j++) {
	            temp = dp[j];
	            dp[j] = Math.min(Math.min(last, dp[j]), dp[j + 1]) + matrix[i][j - 1];
	            last = temp;
	        }
	    }
	    for (int i = 1; i <= n; i++) {
	        res = Math.min(res, dp[i]);
	    }
	    return res;
	}
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码星辰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值