图的深度优先遍历非递归实现—C++

思路:
利用栈非递归实现深度优先遍历(DFS)图。先把起始顶点访问并入栈;然后每次取栈顶元素,找到一个与栈顶顶点连接并且未被访问的顶点,随即访问此顶点,并将此顶点入栈;直到某一顶点没有出边(针对有向图)或者所有连接的顶点都已经被访问过了,删除栈顶元素;循环上述步骤,直到栈为空,深度优先遍历结束。

注:深度优先遍历到所有顶点的前提是此图为连通图;若此图为两个连通图组成的图,则需要两次深度优先遍历,每次都取其中一个连通图任一点作为起始顶点。

代码:

#include <iostream>
#include<vector>
#include<queue>
#include<stack>

using namespace std;

typedef int T;                    //顶点的值类型 int, char, double and so on
struct Node
{
    T value;                      //顶点值
    int numbers;                  //顶点编号
    bool operator==(const Node &other)
    {
        if((this->numbers==other.numbers)&&(this->value==other.value))
            return true;
        else
            return false;
    }
    Node(int a1=0,int a2=0)
    {
        numbers=a1;
        value=a2;
    }
};

struct Edge
{
    int num1;                     //起始顶点
    int num2;                     //终止顶点
    int weight;                   //边所对应的权值
};

class Graph
{
private:
    int vertex_nums;               //顶点数
    int edge_nums;                 //边数
    vector<Node> vertex;           //顶点表,强制设为编号从0开始
    vector<Edge> edge;             //边表
    vector<vector<int> > edge_maze;    //邻接矩阵,存储各个顶点连接关系
public:
    Graph(int n1=10,int n2=10)
    {
        vertex_nums=n1;
        edge_nums=n2;
        for(int i=0;i<vertex_nums;i++)
        {
            Node a;
            a.numbers=i;
            a.value=0;
            vertex.push_back(a);
        }

        for(int i=0;i<vertex_nums;i++)    //邻接矩阵初始化
        {
            vector<int> temp(vertex_nums,0);
            edge_maze.push_back(temp);
        }

        cout<<"please input the edges about the graph: ver
  • 5
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值