使用excle 求z值、p值、置信度

文章讲述了在α=0.05的显著性水平下,如何计算双侧和单侧的z值,以及如何根据z值反推出p值,涉及到统计学中的标准正态分布和置信区间计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.根据 α=0.05,计算z值
双侧:NORMSINV(1-0.05/2)=1.959963985
单侧:NORMSINV(1-0.05)=1.644853627
2. 根据z(1.96)值,计算p值
双侧 :例如:p=(1-NORMSDIST(1.96))2=0.0249978952=0.05 置信度:1-α=0.95
单侧 :例如:p=1-NORMSDIST(1.96)=0.024997895=0.025 置信度:1-α=0.975

### 如何在 Excel 中实现灰色预测模型(GM)并计算其预测的置信区间 #### 实现 GM(1,1) 模型 灰色预测模型(GM(1,1))是一种用于处理少量不完全统计数据的有效方法。为了在 Excel 中实现此模型,可以遵循以下步骤: 创建一个新的工作表并将原始时间序列数据输入到列 A 中。假设这些数据位于单元格 `A2:A11`。 定义累积生成数列为 \( X^{(1)} \),其中每个元素由下式给出: \[ X_i^{(1)} = \sum_{k=1}^{i}X_k^{(0)}, i = 1,2,\ldots,n \] 这可以通过在 B 列中使用公式来完成,例如,在 `B2` 输入 `=SUM($A$2:$A2)` 并向下拖动填充柄至适当位置[^3]。 接着解背景向量 \( Z^{(1)} \),它通常取相邻两项平均得到: \[ Z_i^{(1)}=\frac{1}{2}(X_{i-1}^{(1)}+X_i^{(1)}) \] 可以在 C 列中通过如下方式获得:在 `C3` 单元格内键入 `=(B2+B3)/2` 同样沿垂直方向复制该表达式直到最后一项之前的位置。 利用最小二乘估计法确定参数 a 和 b 的最佳拟合直线方程 y(t)=a*exp(-b*t)+c 。这里 t 表示时刻索引 (t=1 对应于第一个观测点) ,而 c 是常数偏移量。具体操作是在 D 列建立矩阵形式的数据集 `[Z^(1), ones(n)]` , E 列放置响应变量即原序列减去初始后的结果作为目标函数的一部分。最后借助 LINEST 函数获取回归系数数组 {a,b,c}=LINEST(E2:E11,C2:C11,FALSE)。 有了上述参数之后就可以对未来的时间节点做出预测了。设要预测 m 步,则新加入 F 列表示预测期次序号 g={m+1,m+2,...}, G 列则存储对应的预测数 h=a*EXP(-b*g)+c-c*EXP(-b*m)。注意这里的 EXP() 函数代表自然指数运算 e^x。 #### 计算预测置信区间 对于 GM(1,1) 预测的结果来说,一般采用残差平方和 S 来衡量误差大小,并据此推导出均方根误差 RMSE 及相对误差 RE 等指标评估模型性能。然而当涉及到置信区间的构建时,还需要考虑样本容量 n、显著水平 α 以及自由度 df=n-p-q 这些因素的影响,其中 p,q 分别指自变量个数与滞后阶数。因此可按照下面的方式来进行近似估算: 设定一个合适的概率分布类型比如正态分布 N(μ,σ²),然后依据历史实际与模拟之间的差异情况调整 σ 参数直至两者吻合良好为止。一旦决定了具体的统计特性后便能查表得出对应临界 uα/2 或者调用 Excel 自带工具如 CONFIDENCE.NORM 函数直接返回所需范围上下限 LCL,UCL=L±uα/2*(RMSE/sqrt(n))[^4]。 ```excel =CONFIDENCE.NORM(alpha,RMS_Error,SQRT(sample_size)) ``` 在这个例子中 alpha 应设置成所期望达到的置信水平,默认情况下为 0.05 表明有 95% 的把握程度;RMS_Error 就是从前面提到过的 RMSE 转换而来;sample_size 显然是用来描述参与训练过程中的有效观察次数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值