欢迎使用CSDN-markdown编辑器leo

6.1缺失值查看

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。

  • isna()isnull():如果是缺失值则返回True,否则返回False
  • notna():如果不是缺失值则返回True,否则返回False
  • info():输出整个表所有列的数据类型
  • 常用操作:
df.isna().sum()	  #每列有多少缺失值
df.info()       #可以统计缺失值数据还可以获得数据类型
df[df['Physics'].isna()]		#查看某列'Physics',有缺失值的所在行
df[df.notna().all(1)]			#挑出所有非缺失值的行
df[df.notna().any(1)]			#使用all就是全部非缺失值,是any就是至少有一个不是缺失值

6.2缺失值符号

三种符号

  • np.nan

    • 特点1: 不等于自己:np.nan 不能通过判断 自己是否等于自己 的方式 捕获,如下:
     np.nan == np.nan	
    
    • 特点2: 强行转化:导致数据集读入时,即使原来是整数的列,只要有np.nan就会变为浮点型
      在这里插入图片描述
  • None

    • 特点1:等于自己
    • 特点2:布尔值为False
  • NaT

    • 特点1: NaT是针对时间序列的缺失值,是Pandas的内置类型
    • 特点2: 可以完全看做时序版本的np.nan,与自己不等,且使用equals是也会被跳过

Nullable类型与NA符号

  • Nullable类型
    • 特点1: 它与原来标记int上的符号区别在于首字母大写:‘Int’
  • NA特性
    • 特点1:统一缺失值:目的是为了解决之前的混乱局面,前面提到的三种缺失值都会被替换为统一的NA符号,且不改变数据类型
    • 特点2:取值不明直接报错
      在这里插入图片描述

6.3过滤、填充与删除

  • 过滤:
    • isna() ,notna() :
      • isna() : 取值为 NaN 的,
      • notna() :取值不为 NaN 的
        所以isna() 取反相当于 notna(),就是 取值为 不为NaN 的
df.head()

在这里插入图片描述

df[~df['Physics'].isna()].head()

在这里插入图片描述

  • 填充:
    • fillna():
      • 参数介绍:
        • method:填充方式
          • ffill:用前值填充
          • bfill:用后值填充
            在这里插入图片描述
      • val:填充值
        • 均值填充
          在这里插入图片描述
        • 众数填充
        • 特殊值填充
          在这里插入图片描述

问题与练习

【练习一】现有一份虚拟数据集,列类型分别为string/浮点/整型,请解决如下问题

a)请以列类型读入数据,并选出C为缺失值的行

df = pd.read_csv('data/Missing_data_one.csv').convert_dtypes()
df.head()

在这里插入图片描述

df_C_nan = df[df['C'].isna()]
df_C_nan

在这里插入图片描述

b)现需要将A中的部分单元转为缺失值,单元格中的最小转换概率为25%,且概率大小与所在行B列单元的值成正比。

  • 理解不了题,如下为官方答案
min_b = df['B'].min()
df['A'] = pd.Series(list(zip(df['A'].values
                    ,df['B'].values))).apply(lambda x:x[0] if np.random.rand()>0.25*x[1]/min_b else np.nan)
df.head()

在这里插入图片描述

【练习二】 现有一份缺失的数据集,记录了36个人来自的地区、身高、体重、年龄和工资,请解决如下问题:

a)统计各列缺失的比例并选出在后三列中至少有两个非缺失值的行。

  • Q1:统计各列缺失的比例
df = pd.read_csv('data/Missing_data_two.csv').convert_dtypes()
print("各列缺失值数量比例")
df.isna().sum()/len(df)

在这里插入图片描述

  • Q2:选出在后三列中至少有两个非缺失值的行
column_list = df.columns[3:]
df_not2n = df[df[column_list].isna().sum(1)<=1]
df_not2n.head()

在这里插入图片描述

b)请结合身高列和地区列中的数据,对体重进行合理插值。

df_method1 = df.copy()
df_group = df_method1.groupby('地区')
df_group.head()

for temp in df_group:
    df_group_temp = temp[1]
    df_method1.loc[df_group_temp.index, '体重'] = df_group_temp[['身高', '体重']].sort_values(by='身高').interpolate()['体重']
df_method1.head()

在这里插入图片描述

加粗文本 加粗文本

标记文本

删除文本

引用文本

H2O is是液体。

210 运算结果是 1024.

插入链接与图片

链接: link.

图片: Alt

带尺寸的图片: Alt

居中的图片: Alt

居中并且带尺寸的图片: Alt

当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

如何插入一段漂亮的代码片

博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

// An highlighted block
var foo = 'bar';

生成一个适合你的列表

  • 项目
    • 项目
      • 项目
  1. 项目1
  2. 项目2
  3. 项目3
  • 计划任务
  • 完成任务

创建一个表格

一个简单的表格是这么创建的:

项目Value
电脑$1600
手机$12
导管$1

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列第二列第三列
第一列文本居中第二列文本居右第三列文本居左

SmartyPants

SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

TYPEASCIIHTML
Single backticks'Isn't this fun?'‘Isn’t this fun?’
Quotes"Isn't this fun?"“Isn’t this fun?”
Dashes-- is en-dash, --- is em-dash– is en-dash, — is em-dash

创建一个自定义列表

Markdown
Text-to- HTML conversion tool
Authors
John
Luke

如何创建一个注脚

一个具有注脚的文本。1

注释也是必不可少的

Markdown将文本转换为 HTML

KaTeX数学公式

您可以使用渲染LaTeX数学表达式 KaTeX:

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过欧拉积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

你可以找到更多关于的信息 LaTeX 数学表达式here.

新的甘特图功能,丰富你的文章

Mon 06 Mon 13 Mon 20 已完成 进行中 计划一 计划二 现有任务 Adding GANTT diagram functionality to mermaid
  • 关于 甘特图 语法,参考 这儿,

UML 图表

可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图:

张三 李四 王五 你好!李四, 最近怎么样? 你最近怎么样,王五? 我很好,谢谢! 我很好,谢谢! 李四想了很长时间, 文字太长了 不适合放在一行. 打量着王五... 很好... 王五, 你怎么样? 张三 李四 王五

这将产生一个流程图。:

链接
长方形
圆角长方形
菱形
  • 关于 Mermaid 语法,参考 这儿,

FLowchart流程图

我们依旧会支持flowchart的流程图:

Created with Raphaël 2.2.0 开始 我的操作 确认? 结束 yes no
  • 关于 Flowchart流程图 语法,参考 这儿.

导出与导入

导出

如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

导入

如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。


  1. 注脚的解释 ↩︎

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值