1.选择排序
所有排序中最简单也是最没有用的一种排序算法,主要的思想就是,多次循环,依次找出最大致最小的值。时间复杂度为n的平方
private static int[] sortArray(int[] arr){
for (int i = 0; i < arr.length; i++) {
int min=arr[i];
for (int j = i+1; j < arr.length; j++) {
if (min>=arr[j]){
min = arr[j];
arr[j] = arr[i];
arr[i] = min;
}
}
}
return arr;
}
2.冒泡排序
主要思想就是依次比较相邻两位,满足条件就交换。这种方式由于需要两两比较两两交换,效率比较慢。
private static int[] bullingSortArray(int[] needSort){
for (int i = needSort.length-1; i >0 ; i--) {
boolean isAlreadyDown = true;
for (int j = 0; j < i; j++) {
if (needSort[j]>needSort[j+1]){
needSort[j]= needSort[j]^needSort[j+1];
needSort[j+1]= needSort[j]^needSort[j+1];
needSort[j]= needSort[j]^needSort[j+1];
isAlreadyDown = false;
}
}
if (isAlreadyDown) break;
}
return needSort;
}
3.插入排序
这种排序的实现有点类似于冒泡排序,循环将后面的值往前排到值该有的地方
对于基本有序的数组且样本小的时候效率比较高,此排序稳定
如下数组[1,3,9,4,6,5]
找到数字4,插入到前面已有序的数列3和9之间,以此类推,将6与5分别插入到相应的位置。
当然在程序的实现上有点类似于冒泡排序,在空间和时间复杂度上其实与冒泡排序也是一致的。
private static int[] insertSort(int[] needSortArray){
for (int i = 1; i < needSortArray.length; i++) {
for (int j = i - 1; j >= 0; j--) {
if (needSortArray[j] <= needSortArray[j + 1]) break;
needSortArray[j] = needSortArray[j] ^ needSortArray[j + 1];
needSortArray[j + 1] = needSortArray[j] ^ needSortArray[j + 1];
needSortArray[j] = needSortArray[j] ^ needSortArray[j + 1];
}
}
return needSortArray;
}
4.希尔排序
其实就是特殊的一种插入排序的一种,不稳定。只是采用间隔的形式减少交换次数,最大间隔位while(gap<length/3){gap=gap*3+1}
如图,从第一个开始采用间隔为4选取数,形成一组,采用插入排序排好顺序,然后从第二个开始采用间隔为4选取数,形成一组排好顺序,依次类推。
然后将间隔缩小,如缩小到2,再次排序,最终间隔为1最后排一次
如何定义这个间隔序列:Knuth序列
h = 3*h+1;
private static int[] shellSort(int[] needSort) {
int gapNum = 1;
while (gapNum<needSort.length/3){
gapNum = gapNum *3 +1;
}
for (int gap = gapNum; gap >0 ; gap=(gap-1)/3) {
for (int i = gap; i < needSort.length; i++) {
for (int j = i; j > gap-1; j-=gap) {
if (needSort[j]>=needSort[j-gap])break;
needSort[j] = needSort[j] ^ needSort[j-gap];
needSort[j-gap] = needSort[j] ^ needSort[j-gap];
needSort[j] = needSort[j] ^ needSort[j-gap];
}
}
}
return needSort;
}