尺度空间与图像金字塔(二)

本文探讨了高斯金字塔和拉普拉斯金字塔在图像处理中的应用,包括图像下采样引起的混淆问题、预滤波解决方案、高斯滤波在构建金字塔中的作用以及拉普拉斯金字塔如何恢复丢失信息。通过图像融合实例展示了金字塔技术如何实现自然的图像过渡。
摘要由CSDN通过智能技术生成

关于尺度空间和图像金字塔,请移步:尺度空间与图像金字塔(一)
本篇主要探索 高斯金字塔 和 拉普拉斯金字塔

Why multi-scale? Why should you blur?
• Computational efficiency
• Coarse-to-fine
• Extracting hierarchical structure
• First principles of physics of observations
• Visual system is multi-scale

Image sub-sampling

在这里插入图片描述
在这里插入图片描述

Aliasing

Aliasing occurs when you shrink an image by taking every nth (n>1) pixel.
If we do, characteristic errors appear
• Typically, small phenomena look bigger; fast phenomena can look slower
• Common phenomenon
– Wagon wheels rolling the wrong way in movies
– Checkerboards misrepresented in ray tracing
– Striped shirts look funny on colour television
当您通过获取第n个(n> 1)像素来缩小图像时会发生混淆。如果这样做,则会出现特征错误。
•通常,小现象看起来更大; 快速现象可能看起来较慢
•常见现象
–马车车轮在电影中以错误的方式滚动–棋盘格在光线追踪中显示不正确–条纹衬衫在彩色电视上看起来很有趣。

这个棋盘格的例子很能说明问题:
Resample the checkerboard by taking one sample at each circle.
In the case of the top left board, new representation is reasonable.
Top right also yields a reasonable representation.
Bottom left is all black (dubious) and bottom right has checks that are too big.
在每个圆圈取一个样本,对棋盘格重新采样。对于左上方的板,新的表示形式是合理的。右上角也会产生合理的表示形式。左下角全是黑色(可疑),右下角的棋盘格太大。
在这里插入图片描述
Constructing a pyramid by taking every second pixel leads to layers that badly misrepresent the top layer
通过获取每隔一个像素来构建金字塔,会导致金字塔顶层的图像严重歪曲。
在这里插入图片描述

Pre-filtering

Solution: filter the image, then subsample
• Filter size should double for each ½ size reduction. Why?
• How can we speed this up?
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

What does blurring take away

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Gaussian Pyramid

在这里插入图片描述
在这里插入图片描述
图中是3级高斯金字塔,高斯滤波感受野为5x5,权重为[0.05,0.25,0.4,0.25,0.05]
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Sampling reversibility

OpenCV提供了函数 c v 2. p y r D o w n ( ) cv2.pyrDown() cv2.pyrDown() 用于实现高斯金字塔操作中的向下采样,函数首先对原始图像进行高斯滤波变换,以获取原始图像的近似图像,比如,高斯滤波变换所使用的核(高斯滤波器)为:

1 2 \frac{1}{2} 21 [ 1 4 6 4 1 4 16 24 16 4 6 24 36 24 6 4 16 24 16 4 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值