- 产品的整体介绍
(1)一个分布式流媒体平台
(2)在系统或应用程序之间构建可靠的用于传输实时数据的管道,消息队列功能
(3)构建实时的流数据处理程序来变换或处理数据流,数据处理功能
(4)Kafka性能超过ActiveMQ等传统MQ工具,集群扩展性好。
弊端是:
(1)在传输过程中可能会出现消息重复的情况,
(2)不保证发送顺序
(3)一些传统MQ的功能没有,比如消息的事务功能。所以通常用Kafka处理大数据日志。
2.产品的特性及实现原理
特性:
1.高吞吐量、低延迟
kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒,每个topic可以分多个partition, consumer group 对partition进行consume操作。
2.可扩展性
kafka集群支持热扩展
3.持久性、可靠性
消息被持久化到本地磁盘,并且支持数据备份防止数据丢失
4.容错性
允许集群中节点失败(若副本数量为n,则允许n-1个节点失败)
5.高并
支持数千个客户端同时读写
实现原理:
举例介绍:https://zhuanlan.zhihu.com/p/68052232?utm_source=wechat_session
- 发布订阅记录流,和消息队列或者企业新消息系统类似。
- 以可容错、持久的方式保存记录流
- 当记录流产生时就进行处理
3.具体的应用场景
1.日志收集
一个公司可以用Kafka可以收集各种服务的log,通过kafka以统一接口服务的方式开放给各种consumer,例如hadoop、Hbase、Solr等。
2.消息系统
解耦和生产者和消费者、缓存消息等。
3.用户活动跟踪
Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到hadoop、数据仓库中做离线分析和挖掘。
4.运营指标
Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告。
5.流式处理
比如spark streaming和storm
4.产品的相关术语
消息中间件处理节点(Broker),一个Kafka节点就是一个broker,一个或者多个Broker可以组成一个Kafka集群
话题(Topic):是特定类型的消息流。消息是字节的有效负载(Payload),话题是消息的分类名或种子(Feed)名;
生产者(Producer):是能够发布消息到话题的任何对象;
服务代理(Broker):已发布的消息保存在一组服务器中,它们被称为代理(Broker)或Kafka集群;
消费者(Consumer):可以订阅一个或多个话题,并从Broker拉数据,从而消费这些已发布的消息;
ConsumerGroup:每个Consumer属于一个特定的Consumer Group,一条消息可以发送到多个不同的Consumer Group,但是一个Consumer
Group中只能有一个Consumer能够消费该消息
Partition:物理上的概念,一个topic可以分为多个partition,每个partition内部是有序的