数据结构与算法-回溯-黄金矿工

文章讲述了如何利用回溯法解决金矿开采问题,给定一个m*n的网格,每个单元格表示黄金数量,目标是找到一条路径,使得总采集黄金量最大。通过backtrack函数实现路径搜索和更新最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

黄金矿工

你要开发一座金矿,地质勘测学家已经探明了这座金矿中的资源分布,并用大小为 m * n 的网格 grid 进行了标注。每个单元格中的整数就表示这一单元格中的黄金数量;如果该单元格是空的,那么就是 0

为了使收益最大化,矿工需要按以下规则来开采黄金:

  • 每当矿工进入一个单元,就会收集该单元格中的所有黄金。
  • 矿工每次可以从当前位置向上下左右四个方向走。
  • 每个单元格只能被开采(进入)一次。
  • 不得开采(进入)黄金数目为 0 的单元格。
  • 矿工可以从网格中 任意一个 有黄金的单元格出发或者是停止。

示例 1:

输入:grid = [[0,6,0],[5,8,7],[0,9,0]]
输出:24
解释:
[[0,6,0],
 [5,8,7],
 [0,9,0]]
一种收集最多黄金的路线是:9 -> 8 -> 7。

示例 2:

输入:grid = [[1,0,7],[2,0,6],[3,4,5],[0,3,0],[9,0,20]]
输出:28
解释:
[[1,0,7],
 [2,0,6],
 [3,4,5],
 [0,3,0],
 [9,0,20]]
一种收集最多黄金的路线是:1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7。

提示:

  • 1 <= grid.length, grid[i].length <= 15
  • 0 <= grid[i][j] <= 100
  • 最多 25 个单元格中有黄金。

代码:

class Solution {
    int[][] dirs = {{0,1},{0,-1},{-1,0},{1,0}};
    int m,n;
    int[][] grid;
    int ans = 0;
    public int getMaximumGold(int[][] grid) {
        this.grid = grid;
        this.m = grid.length;
        this.n= grid[0].length;
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++) {
                if(grid[i][j]!=0) {
                    backtrack(i,j,0);
                }
            }
        }
        return ans;
    }

    public void backtrack(int x,int y,int gold) {
        gold += grid[x][y];
        ans = Math.max(ans,gold);

        int ret = grid[x][y];
        grid[x][y] = 0;
        for(int d=0;d<4;d++) {
            int nx = x+dirs[d][0];
            int ny = y+dirs[d][1];
            if(nx>=0 && nx<m && ny>=0 && ny<n && grid[nx][ny]>0) {
                backtrack(nx,ny,gold);
            }
        }
        grid[x][y]=ret;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值