黄金矿工
你要开发一座金矿,地质勘测学家已经探明了这座金矿中的资源分布,并用大小为 m * n
的网格 grid
进行了标注。每个单元格中的整数就表示这一单元格中的黄金数量;如果该单元格是空的,那么就是 0
。
为了使收益最大化,矿工需要按以下规则来开采黄金:
- 每当矿工进入一个单元,就会收集该单元格中的所有黄金。
- 矿工每次可以从当前位置向上下左右四个方向走。
- 每个单元格只能被开采(进入)一次。
- 不得开采(进入)黄金数目为
0
的单元格。 - 矿工可以从网格中 任意一个 有黄金的单元格出发或者是停止。
示例 1:
输入:grid = [[0,6,0],[5,8,7],[0,9,0]]
输出:24
解释:
[[0,6,0],
[5,8,7],
[0,9,0]]
一种收集最多黄金的路线是:9 -> 8 -> 7。
示例 2:
输入:grid = [[1,0,7],[2,0,6],[3,4,5],[0,3,0],[9,0,20]]
输出:28
解释:
[[1,0,7],
[2,0,6],
[3,4,5],
[0,3,0],
[9,0,20]]
一种收集最多黄金的路线是:1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7。
提示:
1 <= grid.length, grid[i].length <= 15
0 <= grid[i][j] <= 100
- 最多 25 个单元格中有黄金。
代码:
class Solution {
int[][] dirs = {{0,1},{0,-1},{-1,0},{1,0}};
int m,n;
int[][] grid;
int ans = 0;
public int getMaximumGold(int[][] grid) {
this.grid = grid;
this.m = grid.length;
this.n= grid[0].length;
for(int i=0;i<m;i++){
for(int j=0;j<n;j++) {
if(grid[i][j]!=0) {
backtrack(i,j,0);
}
}
}
return ans;
}
public void backtrack(int x,int y,int gold) {
gold += grid[x][y];
ans = Math.max(ans,gold);
int ret = grid[x][y];
grid[x][y] = 0;
for(int d=0;d<4;d++) {
int nx = x+dirs[d][0];
int ny = y+dirs[d][1];
if(nx>=0 && nx<m && ny>=0 && ny<n && grid[nx][ny]>0) {
backtrack(nx,ny,gold);
}
}
grid[x][y]=ret;
}
}