自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(102)
  • 资源 (3)
  • 收藏
  • 关注

原创 leetcode——121.买卖股票的第一佳时机---动态规划

class Solution: def maxProfit(self, prices) -> int: min_num = prices[0] compare = 0 for i, item in enumerate(prices): min_num = min(min_num, prices[i]) if prices[i] > min_num: compar

2021-12-03 17:34:59 1

原创 leetcode——119.杨辉三角 2 ---动态规划

自己的解法class Solution: def getRow(self, rowIndex: int) -> List[int]: if rowIndex == 0: return [1] if rowIndex == 1: return [1, 1] ago = [1, 1] j = 1 while j < rowIndex: tm

2021-12-03 15:59:21 2

原创 leetcode——118.杨辉三角---动态规划

自己的解法class Solution: def generate(self, numRows: int) -> List[List[int]]: if numRows == 1: return [[1]] if numRows == 2: return [[1], [1, 1]] rst = [[1], [1, 1]] j = 2 start = 0

2021-12-03 15:01:10 3

原创 leetcode——70.爬楼梯---动态规划

动态规划class Solution: def climbStairs(self, n: int) -> int: if n <= 2: return n a = [0, 1, 2] step = 0 for i in range(3, n + 1): step = a[i - 1] + a[i - 2] a.append(step)

2021-12-03 13:48:53 4

原创 leetcode——53.最大子数组和 ----- 动态规划

动态规划class Solution: def maxSubArray(self, nums: List[int]) -> int: if len(nums) == 0: return 0 if len(nums) == 1: return nums[0] out_sum = nums[0] in_sum = 0 for i in range(len(nums)):

2021-12-03 11:24:10 1

原创 leetcode——35.搜索插入位置

自己的解法class Solution: def searchInsert(self, nums: List[int], target: int) -> int: for i in range(len(nums)): if nums[i] == target: return i if target > nums[i] and (i + 1) == len(nums):

2021-12-02 16:54:42 1

原创 leetcode——28.实现strStr()

自己的解法class Solution: def strStr(self, haystack: str, needle: str) -> int: if len(needle) == 0: return 0 if needle in haystack: mark = True else: return -1 if mark ==True:

2021-12-02 16:42:31

原创 leetcode——27.移除元素

自己的解法class Solution: def removeElement(self, nums: List[int], val: int) -> int: if len(nums) == 0: return 0 i = 0 while i < len(nums): if nums[i] == val: del nums[i] el

2021-12-02 16:34:33 52

原创 leetcode——26.删除有序数组中的重复项

自己的解法class Solution: def removeDuplicates(self, nums: List[int]) -> int: i = 1 if len(nums) <= 1: return len(nums) while i < len(nums): if nums[i] == nums[i - 1]: del nums[i]

2021-12-02 16:26:46 264

原创 leetcode——21.合并两个有序链表

自己的解法# Definition for singly-linked list.# class ListNode:# def __init__(self, val=0, next=None):# self.val = val# self.next = nextclass Solution: def mergeTwoLists(self, list1: Optional[ListNode], list2: Optional[ListNode]) -

2021-12-02 16:06:19 55

原创 leetcode——20.有效的括号

自己的解法class Solution: def isValid(self, s: str) -> bool: if len(s) % 2 != 0: return False left = [] mark = False for i in range(len(s)): if s[i] == '(' or s[i] == '[' or s[i] == '{':

2021-12-02 15:24:08 1

原创 leetcode——14.最长公共前缀

自己的解法class Solution: def longestCommonPrefix(self, strs: List[str]) -> str: if len(strs) == 1 or len(strs[0]) == 0: return strs[0] str_pre = "" mark = True i = -1 while mark: i = i + 1

2021-12-02 14:16:11 86

原创 leetcode——13.罗马数字转整数

自己的题解class Solution: def romanToInt(self, s: str) -> int: sum = 0 for i in range(len(s)): if s[i] == 'I': sum = sum + 1 if s[i] == 'V': sum = sum + 5 if i >=

2021-12-02 11:15:40 174

原创 目标检测算法总览

目标检测算法分类基于深度学习的目标检测算法主要分为两类:Two stage和One stage。1)Tow Stage先进行区域生成,该区域称之为region proposal(简称RP,一个有可能包含待检物体的预选框),再通过卷积神经网络进行样本分类。任务流程:生成RP --> 特征提取 --> 分类/定位回归。常见tow stage目标检测算法有:R-CNN、SPP-Net、Fast R-CNN、Faster R-CNN和R-FCN等。2)One Stage不用RP,直接在网络

2021-12-01 14:35:25 1

原创 leetcode——9.回文数

自己的解法class Solution: def isPalindrome(self, x: int) -> bool: if x < 0: return False length = len(str(x)) if x < 10: return True if length % 2 == 0: if str(x)[0: length // 2]

2021-12-01 14:34:29 3

原创 成功解决ERROR: Unable to find the development tool `cc`

ERROR: Unable to find the development tool cc in your path; please make sure that you have the package ‘gcc’ installed. If gcc is installed on your system, then please check that cc is in your PATH.解决措施:You probably don’t have build-essential installe

2021-11-27 13:34:39 12

原创 ubuntu18 安装 opencv-python

这里针对gcc 和 g++ 路径有问题的CC=/usr/bin/gcc CXX=/usr/bin/g++ pip3 install opencv-python

2021-09-27 15:12:13 18

原创 leetcode——5. 最长回文子串

class Solution: def longestPalindrome(self, s: str) -> str: max_len = 1 # 从第二个字符开始判断 d = {} if len(s) == 1: return s mark = 0 for i in range(1, len(s)): if i - max_len >=0 an

2021-07-28 16:51:19 13

原创 leetcode——4. 寻找两个正序数组的中位数

class Solution: def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float: new_num = [] nums1.extend(nums2) print(nums1) print(1//2) nums1.sort() if len(nums1) % 2 == 0:

2021-07-26 19:45:43 23

原创 leetcode——3. 无重复字符的最长子串

class Solution: def lengthOfLongestSubstring(self, s: str) -> int: if len(s) == 0: return 0 if len(s) > 0: d = {} count = 0 max_count = [0] new_start = 0

2021-07-26 16:25:09 9

原创 leetcode——2. 两数相加

# Definition for singly-linked list.# class ListNode:# def __init__(self, val=0, next=None):# self.val = val# self.next = nextclass Solution: def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode: node = te

2021-07-26 16:16:49 10

原创 leetcode——1. 两数之和

class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: d = {} for i in range(len(nums)): if nums[i] in d: return [d[nums[i]], i] d[target - nums[i]] = i return

2021-07-26 16:15:58 6

原创 图片np.array格式转成bytes格式

图片np.array格式转成bytes格式需要将图片的np.array数据转换为bytes,转换之后的bytes数据要等价于open(file,“rb”)。在使用numpy的tobytes(等价于tostring)方法发现得到的bytes数据并不等价于open(file,“rb”)数据,需要对array数据进行相同的图片格式编码之后,再使用tobytes才行。import cv2img_path = "img/test.jpg"# 打开图片文件获取二进制数据with open(img_path,

2020-12-15 09:37:36 1030 5

原创 tensorflow-slim非量化分类图片模型测试

import osimport mathimport tensorflow as tffrom nets import nets_factoryfrom preprocessing import preprocessing_factoryfrom tensorflow.compat.v1 import ConfigProtofrom tensorflow.compat.v1 import InteractiveSessionconfig = ConfigProto()config.gpu

2020-12-14 16:47:16 79

原创 量化版——使用TF Lite将Mobilenet SSD目标检测移植至安卓客户端

使用TF Lite将Mobilenet SSD移植至安卓客户端1. 配置2. 准备工作2.1 下载2.1.1 下载models-1.12.02.1.2 下载模型2.1.3 下载tensorflow-r1.13源码2.2 使用bazel编译tensorflow-r1.13源码3. 训练Mobilenet SSD quantized模型3.1 配置config3.2 开始训练3.2.1 转换ckpt模...

2020-09-21 16:30:25 1903 11

原创 量化版——TensorFlow-Slim图像分类Mobilenet模型并移植至安卓客户端
原力计划

TensorFlow-Slim图像分类Mobilenet量化模型并移植至安卓客户端1. 配置2. 准备工作2.1 下载2.1.1 下载models-1.12.02.1.2 下载模型2.1.3 下载tensorflow-r1.13源码2.2 使用bazel编译tensorflow-r1.13源码3. 训练Mobilenet v1 quantized 模型3.1 制作数据集3.2 定义新的datase...

2020-09-21 16:30:09 520 2

原创 Ubuntu18.04 安装升级pip至20.2.2 坎坷过程

Ubuntu18.04 安装升级pip至20.2.2 1. 以前的尝试2. 解决2.1 卸载电脑上的pip2.2 具体步骤2.2.1 修改ubuntu系统源2.2.2 修改python的pip的源2.2.3 安装pip1. 以前的尝试sudo apt-get install python3-pip使用的时候 就是 pip3 [安装包], 但是版本太低。wget https://bootstrap.pypa.io/get-pip.pypython get-pip.py这个遇到的问题就是下载

2020-08-26 16:47:13 1809

原创 Ubuntu18.04 DeepLabv3+图像语义分割学习 + 实践笔记 (三) 自定义数据集,训练和测试

Ubuntu18.04 deeplabv3+安装测试1. 环境2. 下载安装deeplabv3+2.1 下载deeplabv3+2.2 配置环境3. 测试deeplabv3+1. 环境基本配置版本号CPUIntel® Xeon® CPU E5-2685 v4 @ 2.50GHZ ×4GPUNvidia tesla P100OSUbuntu18.04python3.6tf-gpu1.13.1keras2.3.0numpy1.18.4

2020-08-26 16:10:17 338

原创 Ubuntu18.04安装Xfce桌面与VNC远程工具

ubuntu18.04 + vnc4server + gnome一直灰屏,尝试了无数方法,一直无法解决。最后使用ubuntu18.04 + vnc4server + xfce4 成功!!!https://blog.csdn.net/fxb163/article/details/84193098

2020-08-24 14:23:53 771

原创 2020-08-19

您好,1 安全组以及iptables 放行下即可:添加安全组规则您可以参考下面文档进行添加https://help.aliyun.com/document_detail/25471.html2 iptables 的可以执行如下命令:iptables -I INPUT -p tcp --dport 5901 -j ACCEPT

2020-08-19 16:52:37 37

原创 detectron2训练自己的数据实现目标检测和关键点检测(三) 修改配置文件和代码开始训练

detectron2训练自己的数据实现目标检测和关键点检测——修改配置文件和代码开始训练1. 配置2. 修改配置文件2.1 修改yaml文件2.2 注释mask的代码1. 配置基本配置版本号CPUIntel® Core™ i5-8400 CPU @ 2.80GHz × 6GPUGeForce RTX 2070 SUPER/PCIe/SSE2OSUbuntu18.04python3.6.9gcc5.5g++5.5cuda10.0p

2020-07-30 14:16:22 2976 9

原创 detectron2训练自己的数据实现目标检测和关键点检测(二) 制作转换自己的数据集

detectron2训练自己的数据实现目标检测和关键点检测——制作转换自己的数据集1. 配置2. 使用dlib的imglab标注工具标记图片3. 转换xml文件为coco数据格式1. 配置基本配置版本号CPUIntel® Core™ i5-8400 CPU @ 2.80GHz × 6GPUGeForce RTX 2070 SUPER/PCIe/SSE2OSUbuntu18.04python3.6.9gcc5.5g++5.5cuda10

2020-07-03 09:31:19 3568 2

原创 detectron2训练自己的数据实现目标检测和关键点检测(一) ubuntu18.04安装测试detectron2

detectron2训练自己的数据实现目标检测和关键点检测——ubuntu18.04编译测试detectron21. 配置1.1 环境要求2. 环境安装2.1 torch 和 torchvision2.2 cocoapi (pycocotools)2.3 下载安装detectron23. 测试detectron2——ubuntu18.04编译测试detectron2)1. 配置基本配置版本号CPUIntel® Core™ i5-8400 CPU @ 2.80GHz × 6

2020-07-02 20:05:31 1647

原创 labelme格式到coco格式转换

import osimport argparseimport jsonfrom labelme import utilsimport numpy as npimport globimport PIL.Image#from PIL import Imageclass labelme2coco(object):def init(self, labelme_json, save_json_path="./val.json"):“”":param labelme_json: the list

2020-05-30 14:40:22 933 11

原创 ubuntu18编译安装opencv3.4.3, caffe和openpose, 踩坑记录.
原力计划

ubuntu18编译安装openpose1. 配置2. opencv3.4.3安装编译3. caffe安装4. openpose安装4.1 下载旧版openpose4.2 下载模型4.3 编译4.4 测试5. openpose踩坑问题一:问题一解决:问题二:问题二解决:问题三:问题三解决:问题四:问题四解决:错误五:错误五解决:错误六:错误六解决:1. 配置基本配置版本号CPUIntel® Core™ i5-8400 CPU @ 2.80GHz × 6GPUGeForce

2020-05-09 10:52:22 1110 13

原创 ubuntu18编译安装opencv3.4.3
原力计划

ubuntu18编译安装openpose1. 配置2. opencv3.4.3安装编译2.1 下载源码2.2 安装依赖库2.3 编译opencv3.4.32.4 配置环境变量测试3. 编译opencv踩坑记录1. 配置基本配置版本号CPUIntel® Core™ i5-8400 CPU @ 2.80GHz × 6GPUGeForce RTX 2070 SUPER/PCIe/SSE2OSUbuntu18.04openjdk1.8.0_242python

2020-05-09 09:39:19 479 1

原创 ImportError: dynamic module does not define module export function (PyInit__caffe)

https://github.com/BVLC/caffe/issues/6054

2020-05-06 16:57:58 1046 2

原创 ubuntu18编译opencv2.4.10源码

ubuntu18编译opencv2.4.10源码1. 配置2. opencv2.4.10安装2.1 下载配置3. 问题解决4. 应用1. 配置基本配置版本号CPUIntel® Core™ i5-8400 CPU @ 2.80GHz × 6GPUGeForce RTX 2070 SUPER/PCIe/SSE2OSUbuntu18.04openjdk1...

2020-04-28 10:02:26 409

原创 ubuntu18编译openpose-caffe源码

ubuntu18编译openpose-caffe源码1. 配置2. caffe安装2.1 下载caffe2.2 修改配置文件2.3 编译caffe3. 遇到的问题解决:1. 配置基本配置版本号CPUIntel® Core™ i5-8400 CPU @ 2.80GHz × 6GPUGeForce RTX 2070 SUPER/PCIe/SSE2OSUbun...

2020-04-27 17:56:51 739

原创 使用自己的数据训练MobileNet SSD v2目标检测--TensorFlow object detection
原力计划

使用自己的数据训练MobileNet SSD v2目标检测--TensorFlow object detection1. 配置1.1 下载models-1.12.02. 准备数据集3. 配置文件和模型3.1 下载预训练模型3.2 修改配置文件4. 训练4.1 使用tensorboard查看训练过程5. 冻结模型参数6. 调用pb文件进行预测1. 配置基本配置版本号CPUI...

2020-04-21 19:39:39 1330 4

opencv_3rdparty-ippicv-master_20180518.zip

包括所有系统的20180518版的ippicv, 供opencv使用.免费提供给大家, 希望给个星星.

2020-05-09

data_prepare.zip

tensorflow-slim图像分类数据集结构, 文件data_prepare包含 pic文件, src文件 和 data_convert.py. pic里面是训练集和验证集的分类图片. src包含tfrecord.py. 运行data_convert.py会在pic生成tfrecord文件.

2020-04-08

openpose-master.zip

这是旧版的openpose, 下载新版的时候,编译会有问题, 使用这个旧版就没问题. 希望大家给个小星星.

2020-05-09

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除